Handheld Fire Extinguisher Optimization Using SNAP-Listed Agent Update

Systems Working Group Meeting Cologne, Germany Robert Morrison (FAA) & Thierry Carriere (ADA Tech) 23 May 2013

Taking Today's Technologies into Tomorrow's Markets

ADA Recent and Current Projects in Fire Protection

Expertise in Innovative Designs of Fire Suppression Systems

- Customer: NASA JSC
- Application: ISS Portable Extinguisher
- Status: TRL 7 flight hardware prototype assembled, validated in zero-g, now building flight units
- Technology: Fine Water Mist (droplets < 50 μm) propelled by N₂

- Mr. SPACELY
- Customer: MDA, partner: ARA
- Application: Airborne Laser (Boeing YAL-1) protection
- Status: TRL 6 cancelled
- Technology: Fine Water Mist propelled by CO₂

- Customer: USAF 96th Test Group, partner: ARA
- Funds: USAF SBIR
- Application: Modeling of dry bay fire suppressant delivery and transport
- Status: TRL 5 on-going
- Technology: Open source low-Mach CFD software
- Customer: FAA
- Funds: FAA Phase III
- Application: Handheld Extinguisher for Commercial Aircraft
- Status: TRL 6 prototype
- Technology: Fine Halocarbon Mist
- Customer: OSD/US Navy
- Funds: OSD SBIR Ph. I
- Application: Fireproof enclosure for Li-ion batteries
- Status: TRL 2 concept
- Technology: Thin walls and flameless venting
- Customer: AFRL, partner: ARA
- Application: Hush house fire suppression
- Status: TRL 5 cancelled
- Technology: Long-Reach (40 ft) Fine Water Mist (150 μm), N₂ propulsion

Technologies, Inc.

Ware

Project Background

Civil aviation has seen an increase in Halon 1211 hand-held fire extinguisher (HHFE) in-use restrictions since the 1989 Montreal Protocol.

Most recent cut-off dates for aviation

-International Civil Aviation Organization (ICAO)

- 2015 for new aircraft production
- 2017 for new aircraft type certificate

-European Aviation Safety Agency (EASA)

- 2015 for new aircraft production
- 2025 for new aircraft type certificate
- -Underwriters Laboratories (UL)
 - Pulling its UL 1093 Certification in October 2014.

–Dated March 2009, Withdrawal of the Fifth

Edition of the Standard for Halogenated Agent Fire Extinguishers

ADA Tech has proposed atomized liquids (mist) as a new option

- NASA has been trying to develop non-CO₂/non-halon fire extinguishers for spacecraft for years.
- NASA contracted with ADA to adapt ADA's <u>Fine Water Mist</u> technology to a handheld extinguisher for the International Space Station.
- The flight qualification program has proven the design to perform better than the old CO₂ system – especially against highly exothermic fire threats (e.g., Liion batteries and oxygen candles)
- Finely atomized liquids open a new and potentially rich category of substances for consideration as Halon replacements

Old CO2 HHFE

Proposed Atomization Technology Background

- Features of Fine Mists (applicable to water or other liquids)
 - Droplets < 50 µm possess very large surface area per unit volume
 - Very fine droplets (10-20 µm) behave most like gas but are difficult to generate and deliver with sufficient momentum to a fire
 - More practical solution is the 25-50 µm range (our focus)
 - Rapid phase change of small droplets provide a huge heat sink
 - When properly designed, mists can propagate into cluttered spaces
 - Propellant gas is used and serves multiple functions:
 - Liquid agent expulsion
 - Atomization assist
 - Entrain liquid droplets & mist to fire
 - Dilutes O₂, helps extinguishment by inerting
- <u>ADA's atomization technology is theoretically applicable to most liquid</u> agents and to a variety of Halon replacement problems (engine nacelle, cargo bay), delivering fine mists with high momentum

Adaptation of Technology to Novec 1230

Fine-Halocarbon-Mist (FHM) Hand-Held Fire Extinguisher

Agent: Novec 1230 (FK 5-1-12) Discharge time: 9 s (testing with 4.0 lb of agent) Spray: Fine Novec mist Propellant gas: N_2 or CO_2 Pressure: 300-1000 psi (tested primarily at 500 psi) Delivery assembly/nozzle: patented by ADA Technologies Cylinder: COTS DOT aluminum Operation orientation: optional bladder allows operation in all orientations, including upside down

Twin-fluid atomizer (without nozzle)

Technologies, Inc.

Thermophysical properties of agents of interest

FHM Concept requires 1 Liquid and 1 Gas for proper mixing and atomization

* CO₂ and FE-13 may be liquid at low temperatures

Requirements (AC20-42D) and Status

Requirement	Description	Proposed Design
UL Approved	At least 5B:C per UL 711 standards	Class C requirement met. Class 5B not tested yet.
EPA SNAP Approval	Listed by EPA	Requirement met
FAA Hidden Fire Test	Extinguish at least 9 out of 20 heptane cups	Requirement met
FAA Seat Toxicity Test	Extinguish fire and limit toxic by-products formation	Not tested yet
Temperature Envelope	-65°F to 120°F	Requirement met
Minimum Throw	8 feet or more	Requirement met
Corrosivity	Not corrosive	Requirement met

- In-house class B testing has started (3B & 5B pan fires)
- Seat test not yet attempted

March 2013 Class B Tests

- Performed at US Army Aberdeen (MD) Test Center
 - Indoor facility set up for up to 10B fire (heptane & JP-8)
 - Experienced firefighter, including with Halon 1211 and Novec 1230 HHFE
- Goal of test series: define performance envelope of ADA's experimental Novec HH unit + advance component design
- Test Series Summary:
 - 3 days, 30 pan fire tests
 - 5B heptane fires with Halon 1211 HHFE for practice (5 reps)
 - 3B heptane fires with Novec HHFE (18 tests)
 - 5B JP-8 fires with Novec HHFE (7 tests)

Class B Fire Tests with Experimental Novec HHFE

Success achieved for 2 fires:

- 3B pan / fuel: Heptane (1)
- 5B pan / fuel: JP-8 (2)

Novec used: 3.2 lb (6.6 sec)

Novec used: 4.0 lb (7.2 sec)

Next Steps

- Need to further optimize atomizer and nozzle to improve performance on heptane fires (target 5B)
- Plan to perform new series of tests in June/July 2013 with Novec (dates TBD)
- Will focus on 5B pan fire (and possibly FAA seat test)
- Review potential other liquid agents if Novec falls short
- Project final report by end of this summer

Contact information: Thierry Carriere ADA Technologies (+1) 303-874-8289 thierryc@adatech.com

