Liquid Burner Development for Powerplant Fire Test

Yi-Huan Kao, Michael Knadler, Samir Tambe and San-Mou Jeng

School of Aerospace Systems University of Cincinnati

Project Objective:

- Develop the operating settings for NexGen burner for powerplant fire tests
 - NexGen burner should simulate previously FAA approved liquid burners
 - NexGen burner should be robust and repeatable

Approach:

- Sensitivities of NexGen burner settings on burner temperature and heat flux → to understand burner behavior and to derive the "accuracy" or "tolerance" for burner settings
- Derive the NexGen burner settings
 - Comparison of fire test results from different burners (Park, NexGen and ISO) ...future work
 - Comparison of fire test results from NexGen burner with different settings ...future work

Standard Liquid Burners from Power Plant Engineering Report NO. 3 A Standard Fire Test Apparatus and Procedure (for flexible hose assemblies) E. P. Burke and T. G. Horeff March 1978

Individual TC Temperature Requirements: 1850~2150 F

	Burner	Rated Fuel Flow <u>Capacity</u>	Motor	Blower Wheel (<u>inches</u>)	Fuel Pump	Tube Extension (<u>inches</u>)	Heat Transfer to 1/2-in.Tube <u>Btu/hr</u> .	Total Thermal Energy (<u>Btu/ft/s</u>)	Flame Oxygen Concentration (<u>persent</u>)
	Lennox OB-32	(Reference) only	l/4 hp l,725 r/min.	3 5/8 × 6 1/8	Two Stage	4x12	4,574	9.8-10.8	5-11
- 25	Carlin 200 CRD	2.0-5.0 gal/hr.	1/4 hp 3,450 r/min.	3 1/2 × 5 1/4	Single Stage	4 1/8x11	4,545	9.3-11.2	6.5-8.5
	Stewart Warner HPR-250	1.35-2.50 gal/hr.	l/7 hp 3,450 r/min.	3 9/16 x 5 3/8	Single Stage	4x13 5/32	4,646	9.3-10.1	9.2-9.5
	Stewart Wawner FR-600	2.0-6.0 gal/hr.	1/3 hp 3,450 r/min	3 15/16 x 6 1/32	Two Stage	4x12 7/8	4,466	9.9-10.9	8.5-15.2

Cincinnati

Typical Temperature Distribution

							、、				
1430	1749	1721,	1847	1820	1858	1887	1914	. 1822	1717	1418	
1778	1747	1891	1980	1988	1990	1994	1994	1947	1818	1718	
1789	1847	1944	1997	1987	1978	1948	1975	1983	1915	1669	
1179	1682	1882	1843-	1775	1750	1709	1703	1883	1883,	1401	
0740	1325	1597	1398	1238	1247	1064	1186	1550	1510	0719	
0673	0647	0642	0 5 96	0565	0569	0630	0649	0730	0553	0420	
							• .			-1	

----'= 1800°F

Liquid Burner Requirements

Park Burner (FAA Handbook & AC20-135)

	Fuel Rate (GPH)	Air Rate (ft ³ /min)	A/F ratio (equivalen ce ratio)	TC size	Temperature	Heat Flux (Btu/ft ² -s)
CH. 7 Seat Cushion	2	67	23.0 (0.67)	1/16" (0.010")	7 TC > 1750 F 5 TC > 1800 F AVE> 1800 F	10
CH. 11 &12 Powerplant	?	?	?	1/16" (0.025")	AVE> 2000F	9.3
AC20-135 & AC33-17-1	?	?	?	1/16" to 1/8" (0.010"- 0.025")	1850 F -2150 F TAVE > 2000 F	9.3

NexGen Burner

	Fuel Rate (GPH)	Air Rate (ft³/min)	A/F ratio (equivalence ratio)	TC size	Temperature	Heat Flux (Btu/ft ² -s)
Seat Cushion	2 .02	45-53 (35 to 45 psi)	14.4 – 17.3 (1.02 – 0.849)	1/8"	About 100 F less than Park Burner	10
Acoustic Insulation (AC-25.856-2A)	6	63	6.72 (2.16)	1/8"	1900 ±100°F	16.0 ±0.5
Powerplant	?	?	?	?	?	?

NexGen and Park Burner

www.mornachnozzles.com

Temperature Calibration

- Thermocouple rack
 - 7 thermocouples
 - ≻ K-Type, 1/8 or 1/16 inch stainless steel sheath
 - Exposed bead, 1/4 inch exposed wire
 - Located at target plane (4 inch from burner exit) and 1 inch above burner horizontal center line
- Temp. Min. Avg. =2000 F, Individual= 2000±150 F

Heat Flux Calibration

•Copper tube used as heat transfer device

- >1/2 inch outer diameter, 15 inch un-insulated length
- ≻Water flow rate maintained a 3.8 liter/ min
- >Center of copper tube located at target plane (4 inch from burner exit)

•Heat flux calculated from water flow rate and temperature rise across the tube

Exposed tube length for heat flux calculation is equal to burner horizontal size (11 inch)

Min. 9.3 Btu/ft²-s

Temperature/ Heat Flux Calibration Rigs

7 TCs Rack for Temperature Calibration **Copper Tube for Heat Flux Calibration**

Powerplant Calibration Requirements

Powerplant Fire Wall (engineering) Fire Test (with back side air flows)

UNIVERSITY OF Cincinnati

NexGen Burner w/o cone Original v.s. Modified Turbulator

Record: 3000 fps/ Playback: 15 fps

Park Burner Performance

A		T _{max}	-T _{min}
0	_	T	avg

	Insulation	ТАВ	тс	Fuel rate (GPH)	T_avg (F)	T_max (F) T_min (F)	Heat Flux (BTU/ft^2-s)	θ	
			Dia	2.70	1000	2157	42.05	17.220/	
	N	N	Big	3.70	1996	1813	12.95	17.23%	
Jer	v	Ν	Big	2.65	2025	2147	14.45	13 93%	
gru	Ŷ	N .	Dig	5.05	2023	1865	14.45	13.55%	
폰	N	N Short		3.22	2013	2095	11 10	11 30%	
Pa	N Y	N Short	511011	Dig	5.22	2015	1867	11.10	11.50%
		V Short	Big	2.86	2009	2098	12.07	10.59%	
		Y	Y Short	Short Big	2.86	2005	1885	12.07	10.59%

✓ Original (unmodified):

- ✓ Extremely hard to reach ave.2000 F temperature
- ✓Highly non-uniform temperature distribution
- ✓ With Tabs to improve aerodynamics and air/fuel mixing:
 - ✓ Reduce the required fuel rate to meet 2000 F Ave. temperature requirements
 - ✓Reduce heat flux by about 20%
 - ✓improve temperature distribution
- ✓ With Thermal Insulation to reduce heat loss from expansion cone:
 - ✓ Reduce the required fuel rate to meet 2000 F Ave. temperature requirements
 - ✓ Increase heat flux by about 12%
 - ✓ improve temperature distribution

NexGen Burner Performance

 $\boldsymbol{\theta} = \frac{T_{max} - T_{min}}{T_{avg}}$

	Inculation	ТАР	тс		Air (SCENA)	A /E		T adia/E)	Τ. ονα (Ε)	T_max (F)	Heat Flux	Α
	insulation			Jet-A (GFH)	All (SCEW)	~/ 1	}	i_avia(r)	1_avg (17)	T_min (F)	(BTU/ft^2-s)	v
	N	Short	TC1	2 96	61.00	14 07	1.05	2647	2008	2095	10 51	10 53%
2	N	31010	161	2.80	01.09	14.02	1.05	3047	2000	1884	10.51	10.5570
l'u	v	Short	TC1	2 38	50 17	16 22	0 00	3/60	2038	2092	11.40	5 11%
)B(•	SIGIC	ICI	2.50	35.12	10,33	0.50	3-105	2030	1988	11.40	3.1170
Ger	N	Long	TC1	2 44	55 19	14.86	0 00	3615	2007	2063	9.70	7 33%
ext		LUNS	1.67	2.44	55.10	14.60	0.55	3013	2007	1916	5.70	7.5570
z	v	Long	TC1	2.26	55 19	16.05	0 01	3/01	2002	2059	11.07	6.62%
		LVINS	104	2.20	55.10	10.05	0.91	3431	2002	1927	11.07	0.0270

✓ Will use less fuel rate, compared to Park burner, to meet temperature requirements

- ✓ More uniform temperature distribution compared to Park Burner
- ✓ "Long Tabs" has lower heat flux and more uniform temperature
- ✓ Burner behavior is sensitive to details of TAB's "geometry and configuration"

 \checkmark Insulation on expansion cone reduces the fuel rate requirements and has more uniform temperature but increase the heat flux about 10%

✓A/F ratio (equivalence ratio: 0.90 -1.05) is near stoichiometric and will generate the "highest" temperature fire (around 3500 F theoretical gas temperature)

Small TCs provide around 100 F higher temperature readings
 Distance from burner exit impacts on measured temperatures

Effects of TC Wire and Bead Size

	Insulation	ТАВ	тс	Jet-A (GPU)	Air (SCFM)	A/F	ф	T_adia(F)	T_avg (F)	T_max (F) T_min (F)	Heat Flux (BTU/ft^2-s)	8
	N	Long	Big	2.44	55.18	14.86	0.99	3615	2007	2063	9.70	7.33%
Ъ.										1916		
r.n	N	Long	Small	2 35	55 18	15 43	0.05	2562	2021	2101	9.40	10 48%
B		1010	Sman	2,33	55.18	101-10	0.50	5565	LULI	1889	5.40	10/070
Gen	v	Long	Big	2.26	EE 10	16.05	0.01	2401	2002	2059	11.07	6 6 79/
eXt	•	Long	Dig	2.20	55.10	10.05	0.31	3491	2002	1927	11.07	0.0276
Ź	v	Long	Small	2.20	EE 10	16 E0	0.90	2449	2008	2106	10.74	9 60%
	ľ	Long	Small	2.20	55.18	10.50	0.89	3448	2008	1933	10.74	0.00%

✓ Thermocouple wire size (bead size) can affect burner settings and heat flux
 ✓ With smaller thermocouple bead (wire size) the fuel rate can be reduced by about 3 % and heat flux is also reduce by about 3 %

Fuel Sensitivity, Air Sensitivity for NexGen Burner

Burner Arrangements: Inculated Cone, TAB- small, TC- small

Fuel Sensitivity, NexGen Burner

			Air (SCEM)	Λ/E	<u>ь</u>	T adia(E)	Τ. ονα (Ε)	T_max (F)	Heat Flux
	Jet-A (GPO)		All (SCFIVI)	Ауг	Ψ	1_auia(F)	1_avg (F)	T_min (F)	(BTU/ft^2-s)
	1 0 2	75 59/	62.0	22 00	0.64	7725	1600	1809	6 92
	1.05	/5.5%	05.9	22.09	0.64	2/35	1090	1392	0.02
	1.06	90.7%	62.0	21 41	0.60	200F	1762	1870	7 44
	1.90	6U. <i>17</i> 0	05.9	21.41	0.09	2095	1/05	1525	7.44
	2.00	96.3%	62.0	20.05	0 72	2010	1025	1934	° 02
	2.09	00.2%	05.9	20.05	0.75	2013	1022	1674	0.05
	2 22	01 /0/	62.0	10.01	0.70	2167	1070	1982	9.70
	2.22	91.4%	03.9	19.91	0.78	3107	10/0	1700	8.70
	2.24	06.6%	62.0	17.00	0.92	2222	1051	2049	0.02
	2.34	90.0%	03.9	17.89	0.82	5277	1921	1808	9.92
	2.42	100.0%	62.0	17 20	0.05	2254	2019	2102	11.00
7	2.43	100.0%	03.9	17.28	0.85	5554	2018	1868	11.06
	26	107 20/	(2.0	10.11	0.01	2401	2015	2135	11 17
	2.6	107.3%	63.9	10.11	0.91	3491	2015	1824	11.17
	2 72	112 50/	(2.0	15.20	0.00	2570	2005	2189	11.00
	2.73	112.5%	63.9	15.30	0.96	35/9	2065	1864	11.96
	2.00	447 70/	<u> </u>	11.00	1 00	2626	2005	2215	11 00
	2.86	117.7%	63.9	14.68	1.00	3020	2085	1860	11.99

:baseline point

 \checkmark Air mass flow rate is fixed around 63.9 SCFM.

✓ Jet-A mass flow rate is changed from 1.83~2.86GPH, and ϕ is also changed from 0.64 to 1.

UNIVERSI

Fuel Sensitivity, NexGen Burner ...con't

Air Sensitivity, NexGen Burner

Jet-A (GPH)	Air (SCFM)		A/F	ф	T_adia(F)	T_avg (F)	Temp. Diff %	T_max(F)	Heat Flux	Heat Flux													
2.24		96 59/	15 40	0.05	25.62	1002	1.20%	2085	0.02	4.720/													
2.34	55.3	80.5%	15.48	0.95	3503	1892	-1.38%	1463	9.93	4.73%													
2.24	EQ	90.6%	16.20	0 01	2/01	1029	1 00%	2096	0.20	2 0/1%													
2.54	50	90.0%	10.20	0.91	5491	1950	1.00%	1605	9.29	-2.04/0													
2 34	61	95 5%	17 09	0.86	2270	10/18	1 55%	2071	9.08	_1 25%													
2.34	01	33.378	17.05	0.80	3375	1340	1.33/0	1704	5.08	-4.23/0													
2 34	62.9	100.0%	17 80	0.82	2277	10/12	1 20%	2055	0.28	-2 17%													
2.34	03.5	100.078	17.05	0.82	5277	1945	1.25/0	1719	5.20	-2.17/0													
2.24	66.9	10/ /%	18 68	0 70	3106	1000	-0 50%	2027	0.75	2 83%													
2.34	00.8	107.478	10.00	0.75	5190	1505	-0.3078	1659	5.75	2.03/0													
2 34	69.6	108 9%	10/18	0.75	3070	1881	-1 96%	2002	9 57	0 80%													
2.34	69.6	69.6	69.6	69.6	69.6	69.6	69.6	69.6	69.6	69.6	69.6	69.6	69.6	69.6	69.6 108.9%	13.40	0.75	5075	1001	-1.90%	1629	9.37	0.05%

baseline point

$$Temp.Diff.\% = \frac{T_{indi\ case} - T_{mean,6\ cases}}{T_{mean,6\ cases}}$$

$$Heat\ Flux\ Diff.\% = \frac{\dot{Q}_{avg,indi} - \dot{Q}_{avg,6\ cases}}{\dot{Q}_{avg,6\ cases}}$$

UNIVERSI

 \checkmark Jet-A mass flow rate is fixed around 2.34 GPH

 \checkmark Air mass flow rate is changed from 55.3~69.6 SCFM, and ϕ is changed from 1 to 0.75 as well.

Air Sensitivity, NexGen Burner ...con't

Air % Changed

Air % Changed

Mass Flow Rate Effect, NexGen Burner

	Jet-A (GPH)	Air (SCFM)	Total Mass (lb/min)		A/F	ф	T_adia(F)	T_avg (F)	T_max(F) T_min(F)	Heat Flux (BTU/ft^2-s)	θ
	1 47	47.6	3.68	82 99%	21 23	0 69	2895	1651	1744	6 74	0 17
	1.47	47.0	5.00	02.3370	21.25	0.05	2055	1051	1468	0.74	0.17
	1 6	F1 6	2 00	90.969/	21.24	0.60	200F	1777	1806	7 5 2	0 1 1
	1.0	51.0	5.99	09.00%	21.24	0.09	2095	1/2/	1609	7.55	0.11
	1.00	FA A	4.21		21.22	0.60	2005	1764	1851	7.01	0.12
	1.08	54.4	4.21	94.05%	21.22	0.09	2095	1704	1613	7.91	0.15
	1 77	F7 3		100.00%	21.22	0.60	2005	1701	1857	0.20	0.09
7/	1.//	57.5	4.44	100.00%	21.25	0.69	2895	1/91	1714	8.39	0.08
-	1.00	(1.2	4.74	100.070/	21.24	0.00	2005	1010	1876	0.74	0.00
	1.89	61.2	4.74	106.87%	21.24	0.69	2895	1812	1722	8.74	0.08
	2.00	65.2	5.04	112 500/	21.22	0.00	2005	1000	1914	0.40	0.05
	2.00	05.2	5.04	113.58%	21.22	0.69	2895	1903	1813	9.48	0.05

baseline point

Mass Flow Rate Effect, NexGen Burner ... cont'd

	Jet-A (GPH)	Air (SCFM)	Total Mass (lb/min)		A/F	ф	T_adia(F)	T_avg (F)	T_max(F) T_min(F)	Heat Flux (BTU/ft^2-s)	θ
	1 62	17.6	2 71	82 45%	19 37	0.76	3109	1723	1831	7 72	0 12
	1.02	47.0	5.71	02.45%	15.57	0.70	5105	1725	1626	1.12	0.12
	1 72	51.2	2.07	99 /11%	10 20	0.76	2100	1752	1854	0 1 /	0 1 2
	1.75	51.2	5.97	00.41/0	19.59	0.76	5109	1/52	1625	0.14	0.15
	1 0 /	EA A	4.22	04 219/	10.20	0.76	2100	1010	1909	0.04	0 1 4
	1.04	54.4	4.25	94.21%	19.30	0.76	5109	1010	1654	9.04	0.14
N	1.06	E7 0	4 50	100 00%	10.27	0.76	2100	1026	1933	0.02	0 1 2
7	1.90	57.0	4.50	100.00%	19.57	0.76	5109	1030	1708	9.05	0.12
	2.09	61.2	4.76	105 06%	10.20	0.76	2100	1057	1925	0.27	0.00
	2.08	01.2	4.70	105.90%	19.59	0.76	5109	1054	1755	9.57	0.09
	2 1 4	62	4.00	100.02%	10.20	0.76	2100	1907	1962	0.00	0.09
	2.14	05	4.90	109.02%	19.50	0.76	5109	1097	1803	9.90	0.08
		CA 9	F 04	112 00%	10.20	0.76	2100	1014	1972	10.20	0.06
	2.2	04.0	5.04	112.09%	19.50	0.76	5109	1914	1851	10.20	0.00
	2.25	66.6	E 10	115 169/	10.20	0.76	2100	1022	1958	10.04	0.04
	2.25	00.0	5.10	113.10%	19.30	0.70	2103	1922	1883	10.04	0.04

:baseline point

Mass Flow Rate Effect, NexGen Burner ... cont'd

	Jet-A (GPH)	Air (SCFM)	Total Mass (Ib/min)		A/F	ф	T_adia(F)	T_avg (F)	T_max(F)	Heat Flux	θ
	1.83	47.8	3.74	82.49%	17.11	0.86	3379	1884	1990	98.54	0.17
									1661		
	1.96	51	3.99	88.11%	17.09	0.86	3379	1859	1957	100.01	0.17
									1633		
	2.09	54.6	4.27	94.22%	17.12	0.86	3379	1948	2035	119.06	0.12
									1802		
N	2.22	58	4.53	100.00%	17.13	0.86	3379	1992	2047	- 120.82 - 130.19	0.07 0.08
7									1908		
	2.35	61.2	4.79	105.78%	17.14	0.86	3379	2049	2105		
									1950		
	2.48	64.6	5.05	111.40%	17.13	0.86	3379	2075	2134	134.66	0.09 0.10
									1951		
	2.61	68	5.32	117.35%	17.12	0.86	3379	2088	2168	139.12	
									1960		

baseline point

Mass Flow Rate Effect, NexGen Burner ... cont'd

	Jet-A (GPH)	Air (SCFM)	Total Mass (lb/min)		A/F	ф	T_adia(F)	T_avg (F)	T_max(F) T_min(F)	Heat Flux (BTU/ft^2-s)	θ
	2.05	49 9	3 92	82 68%	15 94	0 92	3511	1899	2094	111.49	0.37
	2.05		5.52	02.00%	13.54	0.52	5511	1055	1398		
	2.2	53.5	4.20	88.55%	15.94	0.92	3511	1972	2142	111.32	0.31
									1539		
	2.35	56.9	4.47	94.28%	15.93	0.92	3511	1975	2182	114.79	0.34
									1507		
	2.49	60.3	4.74	100.00%	15.95	0.92	3511	2004	2209	137.10	0.33
ער									1553		
-	2.63	63.9	5.02	105.88%	15.92	0.92	3511	2031	2225	136.49	0.29
									1627		
	2.77	67.3	5.29	111.46%	15.92	0.92	3511	2073	2244	134.06	0.25
									1731		

baseline point

Influence of Equivalent Ratio, φ , NexGen Burner

NexGen Burner

 \geq Nexgen burner is more sensitive to fuel flow rate change than air flow rate change.

➤TC bead size impacts on the measured "TC temperature" under the same flame.

➤TC temperature is significantly lower than true flame temperature.

➢Higher total mass flow rate can produce higher temperature and higher heat flux at the same A/F (equivalent ratio) conditions.

➢Higher total mass flow rate can produce more uniform flame temperature.

At the similar total mass flow rate conditions, fuel leaner operating (higher A/F ratio) provide more uniform temperature distribution.

