

The evaluation of bromotrifluoropropene as a halon 1211 replacement

J Grigg and A Chattaway

Presentation contents

- Introduction
 - What is the AAWG?
 - What are it's aims?
- Tropodegradable molecules
- Agent shortlist
- Selection of a leading candidate
- Small scale class A & B testing
- Full scale testing
- Summary & conclusions

The Advanced Agent Working Group

- Research consortium looking for a drop-in replacement for halon 1301
- Members include US North Slope Oil Producers, US DoD, NMERI, UK MoD, QinetiQ (formerly DERA) and Kidde
- Approach
 - select likely candidate agents
 - conduct initial toxicity screening on paper
 - procure agents
 - test for toxicity & fire suppression effectiveness
- Tropodegradable bromocarbons

Tropodegradable bromocarbons

- Need bromine for catalytic radical removal mechanisms of fire suppression
 - But this presents ODP issues
 - Therefore need molecular degradation at low altitudes (tropospheric degradation or tropodegradable)
- Mechanisms available
 - Reaction with hydroxyl radical (OH•)
 - Photolysis
 - Physical removal (rainout)
 - Reaction with tropospheric ozone
- In practice only the first two are important

Molecular functions that impart tropospheric degradation

- Alkenes (C=C)
- Alcohols (C-OH)
- Ethers (C-O-C)
- Amines (C-N)
- Carbonyls (C=O)
 - aldehydes, ketones, esters
- Aromatics

Physical properties of BTP

Name	Halon 1301	Halon 1211	ВТР
Chemical Formula	CF₃Br	CF ₂ BrCl	CH ₂ CBrCF ₃
ODP	10	3	0.0037
Atmospheric Lifetime (years)	65	11	0.011
Molecular Weight	148.90	165.36	174.95
Boiling Point (°C)	-57.8	-4	34
Vapour Pressure (bar(a) at 25°C)	16.0	2.8	0.74
Liquid Density (g.cm ⁻³ at 25°C)	1.54	1.8	1.65

Cardiotoxicity testing of BTP

- Carried out by Huntingdon Life Sciences, Cambridge, UK
- NoAEL = 0.5 vol%
- LoAEL = 1.0 vol%
- Cup burner is 4.6 vol%, so this agent cannot be used for total flooding in occupied spaces
- BUT these NoAEL/LoAEL values are identical with halon 1211
- Is BTP a viable halon 1211 replacement?

Cup burner testing

Agent	Fuel Temperature (°C)	Extinguishing Concentration (Vol%)		
Halon 1301	57	3.6 ± 0.1		
Halon 1011	50	4.1 ± 0.2		
Bromotrifluoropropene	55	4.6 ± 0.1		
HFC-227ea	50	6.8 ± 0.1		

All values obtained with an airflow of 30 L/min.

Small scale testing (class A fires)

- Kidde Research mini-crib
- 16 wood members, 65x10x12mm, wire-wrapped in bundles of 4
- K-Type thermocouple (T/C) monitors core crib temperature

287 L Class A test chamber

Class A fire test results

200 L fire test chamber

Class B fire test results

Decomposition products

- Comparison using results from class A testing
- Fire size to room volume: 6.9 kW.m⁻³

	Good Suppression		Poor Suppression			
Agent	Agent Conc. (volume%	Fire-out time (s)	Peak Acid Gas (ppm)	Agent Conc. (volume%	Fire-out time (s)	Peak Acid Gas (ppm)
FM-200	6.4	16	6000	5.1	95	12000
ВТР	2.8	6	650	2.3	80	1900
Halon 1301	2.4	18	125	2.2	41	560

Full scale hand extinguisher testing

- Performed at UL Canada
- Standard Kidde 2.5 pound halon 1211 extinguisher used
 - nozzle orifice sized to give correct discharge time
- Target rating: UL 5B
- Cylinder charged with 3.5 pounds agent extinguished 5B fire
 - extinguishment time 5.2 s
 - actual mass discharged < 2.5 pounds
- Therefore BTP is a drop-in halon 1211 replacement agent

Toxicity testing

- Completed
 - AMES
 - Human lymphocyte (chromosomal aberration)
 - Preliminary limit test: 5 vol% for 30 minutes (rats)
 - Cardiotoxicity

- Outstanding
 - Tests relating to worker exposure, including sub-chronic toxicity tests

Summary and conclusions

- Small scale laboratory testing and full scale hand extinguisher testing confirms that BTP is a drop-in replacement for halon 1211
- Both agents share a similar toxicological profile
- Therefore there is an effective and environmentally acceptable alternative to halon 1211
- If the agent can be manufactured commercially, then halon 1211 can be phased out from aviation and military usage