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PREFACE

The assistance of Messrs. Franklin Fann and William Markland in performing
these tests is acknowledged. Mr. Joseph Cox performed the photographic
documentation.
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INTRODUCTION

PURPOSE. ~

The purpose of this test program is to devise and evaluate techniques for
modeling aircraft cabin fires. The end product will be more economical
methods of aircraft fire testing as well as more comprehensive understanding
of the dynamics of hazard development during a postcrash cabin fire. The
motivation for the tests described in this document was to investigate dis-
crepancies between modeling and full-scale fire test results as possibly being
caused by fuselage orientation and height of open doorways above the pool
fire.

BACKGROUND.

The current cabin fire safety program at the National Aviation Facilities
Experimental Center (NAFEC) contains the following three major elements:
full-scale fire tests in a simulated wide-body aircraft (reference 1); fire-
modeling tests (reference 2); and broad laboratory programs in smoke, flamma-
bility, and toxicity (reference 3). The fire-modeling tests are the most
recent addition to the program, and the modeling tests are conducted along
with full-scale tests both to preview the test variables and to develop a
broader base of data.

The first series of model tests (reference 4) led to a determination of
radiative flux to the cabin interior from an external fuel fire and resulted
in redesign of the pool fires used in NAFEC full-scale tests (reference 1).

The second phase of the modeling tests (partly described in reference 5)
involved the use of a 26.5-foot-long 1/4-scale simulated fuselage complete
with six doors, a floor, and a ceiling. This phase of modeling concentrated
on the effects of wind and door openings on hazard development within a fuse-
lage from an external pool fire. The result was a clear exposition of the
importance of door opening configurations and wind on hazard development.
However, at this point the model tests were employing fire sizes up to twice
the diameter of the fuselage, and the existing wide-body, full-scale facility
was restricted to fire sizes of slightly more than half the fuselage diameter.

In order to validate the applicability of model test results to larger fires
as well as to confirm the model predictions on the effects of doorways, a sup-
plementary project was established whereby a surplus DC-7 fuselage was exposed
to a 20-foot-square fuel fire (reference 6). The project generated full-scale
information on the cabin hazards generated by a large fuel fire adjacent to
full-size aircraft fuselage. The results of these tests agreed well with
those of the model tests with one marked exception. In model tests conducted
under zero-wind conditions, opening even one additional doorway prevented
entirely the accumulation of heat and smoke in the cabin from the door exposed
to an external pool fire. 1In the DC-7 project, however, heat and smoke built
up in the cabin during the zero-wind tests regardless of the number of
additional doors opened. '



At least three hypotheses have been advanced for this anomaly between the
model and the DC-7. First, a simple geometric scaling of the fire scenario
may not effectively reproduce the full-scale phenomena in all respects.
Second, a possibility exists that the anomaly is caused by the different fire
sources. For the model, the fuel fire was contained in a steel tray sus-
pended approximately 2 feet above the ground. In the DC-7 project, the fuel
fire was contained in a concrete basin at the ground level. This second
hypothesis, if true, also has a bearing on the wide-body (C-133) project,
which also employed raised fire pans. Finally, the fire penetration may be
affected by the circumferential position of the doorway. The DC-7 doorway is
approximately centered with respect to the top and bottom of the fuselage,
while the model had a doorway placed h1gher on the fuselage 31de The
comparisons are photographically shown in figure 1.

EXPERIMENTAL OBJECTIVE,

The experimental objective of these tests was to determine the effects of the
following parameters on hazard development within a fuselage from an external
pool fire: (1) circumferential position of the door opened to the fire, (2)
additional door openings in a quiescent environment, and (3) height of the
door above the fire. More specifically, the test objective was to determine
the cause of the aforementioned difference in results between the earlier
documented model tests and subsequent full-scale investigations.

DISCUSSION

TEST CONFIGURATION.

The tests were performed in a warehouse-type building, 102 feet long and 39
feet wide. The building side walls were 20 feet high, and a 26-foot-high
peak ran the length of the building. All test fires were positioned under
the peak and 55 feet from the front of the building.

The fire scenario consists of an intact fuselage with an external fuel fire
adjacent to a doorway opening and possibly another opening away from the fire.

The tests involved positioning a model fuselage section against a fuel-filled
pan that would serve as the fire bed. Both the pan and the model could be
raised and lowered with respect to each other, and the model could be rotated
along its centerline or longitudinal axis. In this manner, a doorway cut in
its side could be varied as to height above the fire base and to circumferen-
tial position on the fuselage.

The model fuselage section (hereafter designated as the model) was a close-
ended duct of 10-foot length and 3-foot diameter. The model was fabri-

cated from shaped and welded 0.062-inch mild steel sheet, reinforced with 2-
by 0.187-inch bands. The end flanges were made of 0.187-inch mild steel sheet.
An 8- by l6-inch door was cut into the side of the model midway between

the flanged ends. This door was geometrically scaled to the door in the

C-133 fuselage (reference 1).



Each end of the model had a cover fabricated in such a way that the cover
could be detached while the model was rotated and thus maintain its vertical
orientation. One cover held a large observation window through which the
interior could be illuminated, viewed, afid photographed. The other cover had
a removable 10- by 12-inch glass window in its center. The removal of this
window would simulate the opening of an additional door in a longer fuselage.
Figures 2a and 2b show overall views of the test configuration, while figures
3a and 3b show test photographs with the two end covers visible,

The fuel pan was 4—feet square and was immersed in a 4.5- by 5.5-foot
water-filled pan to prevent warping of the metal. The water-filled pan
rested on a chassis made of angle iron, and the assembly was mounted on
wheels for easy movement. The support points between the chassis and water
pan were four scissor jacks. These jacks allowed leveling of the fuel pan
and height adjustment with respect to the model.

Provisions for the model to be rotated and raised with respect to the fuel pan
allowed a range of potential fire scenarios to be duplicated. Due to uncer-
tainty of terrain as well as final fuselage orientation following a crash,
numerous possible orientations of a fuselage with respect to a fire can be
expected. For instance, collapse of the landing gear on one side of the air-
craft would cause the fuselage and, consequently, the door angle to be oriented
towards one side with a fire on the ground. Crash landings on unpaved areas
where landing gear are sheared off can result in a configuration where the

fire bed is relatively close to the bottom of a door or fuselage break.

INSTRUMENTATION.

The instrumentation for the test series consisted of temperature and photo-
graphic measurements. Three chromel/alumel thermocouples were mounted 1 inch
below the top of the duct on a support bar. One of these was at the model
center, and the other two were 28 inches from the model ends. Since the
support bar was attached to the end covers, the thermocouples could be
maintained at the ceiling when the model was rotated. A fourth thermocouple
was mounted over the fuel pan to serve as an event marker when the fire was
started. All four thermocouples monitored test conditions at approximate
2-second intervals. An Esterline Angus Model D2020 thermocouple recorder was
used for data collection.

The major photographic documentation was accomplished by a motorized 35-milli-
meter camera with frame sequencing every 2 seconds during the test. The
camera lens was positioned on the model centerline and outside the end

cover with the viewing window. The camera had a split-screen viewing capa-
bility and clock. Therefore, every frame showed the model interior along

with the time, frame number, and test number. While the ceiling thermo-
couples measured interior temperature increases caused by fire penetration
through the model doorway, the photographs provided a qualitative measure of
the smoke buildup during the test.



TEST DEVELOPMENT.

Three parameters were varied in the course of this test series. First, the
relative height of the model fuselage was changed with respect to the fuel

pan height. Second, the model was rotated on its longitudinal axis so that
the side door was at different positions on the model circumference. Finally
the end cover 10- by 12-inch window was either in place or removed. This led
to a total of 18 configurations, and each configuration was tested in dupli-
cate to prevent any spurious conclusions from being drawn. Figure 4 shows

the nine configurations for varying the relative height of the model along
with ifs rotation. Rotation was measured as circumferential distance moved

in inches between the center (top to bottom) of the door (as rotated) and the
horizontal plane through the center of the fuselage. Four rotational positions
were tested, -8, 0, 8, and 16 inches. The height of the fire source was also
varied in relation to the lateral extension of the fuselage center. There
were three fire source positions, 0, 8, and 16 inches circumferential distance
between the top of fuel pan and laterally extended fuselage centerline. The
significant dimensions are further described in table 1. 1In all tests, the
model door was centered with respect to the adjacent fires; i.e., the center
of the door opening was aligned with the center of the fire pan.

The tests were run in a fully enclosed quiescent environment. All smoke
accumulation in the test building during the test was exhausted at the end of
the test. The instruments were controlled from a room adjacent to the test
building.

In a typical test, all windows were cleaned of soot, all doors to the build-
ing were closed, and all equipment was checked. Four gallons of JP-4 in the
fuel pan were ignited by a hand-held torch. The fire burned for 60 seconds,
and then the remotely controlled Cardox ® COy system was activiated to ex-
tinguish the fire.

RESULTS

It should be noted that the temperature and smoke hazards in these tests
differed from those experienced in the previously tested l/4-scale model
(references 2 and 5), primarily from two effects. The 1/4-scale model had
flooring and ceiling, while the model in these tests did not. 1In addition,
the long length-to-diameter ratio of the 1/4-scale model allowed more volume
for dispersal of heat and smoke entering the doorway. Nevertheless, this
simplified 3-foot diameter fuselage was adequate for determining generalized
effects of fuselage orientation.

Table 2 shows the type hazard at 40 and 60 seconds into the tests as noted by
averaging the outputs of the two thermocouples closest to the model end
covers. Also presented are comments developed from visual observations
through the viewing window. Figures 5 through 13 show the corresponding



interior photographs taken at 40 and 60 seconds into the test. Since the
motorized camera was sequenced every 2 seconds, the frame number 20 of a test
is equivalent to the 40 second time, while frame number 30 is taken at 60
seconds into the test.

Except in some cases of total obscuration, the fire is visible through the
door on the right-hand side of the photographs. The top two photographs on
each figure represent a fuselage fire configuration with the end cover window
closed. The bottom two photographs show the corresponding interior condi-
tions for the case when the end cover window is open. 1In every case, opening
thes additional window results in less smoke. Also listed with each photo-
graph is the corresponding ceiling temperature increase as noted in table

2.

Comparing the noted temperatures with the photographs indicate that there is
no direct relationship between overall visibility and ceiling temperature in
these tests. For instance, test 10 with a 40-second ceiling temperature
increase of 219 Fahrenheit degrees (F°) shows less visibility than test 1
with a ceiling temperature increase of 283 F°. Rather, the relation between
ceiling temperature and visibility is strongly affected by smoke stratifica-
tion. For the closed end window cases, smoke stratification is clearly more
pronounced when the door is higher up on the fuselage. This observation is
generally true also for the cases when the end window is open, although only
tests 7 and 12 show significant smoke accumulation in this case.

Figures 14 through 16 show plots of the 40- and 60-second ceiling temperature
as a function of fuselage rotation for various fixed positions of the fire
bed. Noted on these figures are the equivalent conditions found in the C-133
tests, the DC-7 tests, and the model tests. The general trend in evidence
for these figures is that the hazard is worst when the center of the doorway
is near the 90° position where 0° represents the top of the fuselage. (This is
the location of actual doorways in most current transport aircraft.) The
configuration equivalent to the DC-7 (tests 5 and 7) shows high temperature
both when the end cover window is open and when it is closed. The C-133 and
model configurations, on the other hand, show high temperatures when the end
window is closed and low temperatures at 60 seconds when the end window is
open.

These results conform to the past test experience for both modeling and full
scale as documented in references 1, 5, and 6. The DC-7 had significant
hazard development (reference 6) when additional ventilating doors were open
as well as when they were closed. Earlier model tests had shown hazard
buildup when the ventilating doors were closed, but not when they were open
(reference 5). The C-133 has been tested only with the ventilating door open
and consistently shows little hazard in a zero-wind environment. All these
earlier configurations and relative hazards were duplicated with the tests
described in this report, and the hazards were found to be controlled by
fuselage rotation and fuel bed height.



The results in figure 15 predict that the C-133 would sustain significant
heat and smoke from the external fuel fire if all doors other than the door
facing the fire were closed. -

Figures 17 through 19 show the temperature buildup at 40 and 60 seconds when
the fuselage rotation is invariant but the fuel pan is adjusted in height
relative to the fuselage. It is apparent that as the fire base is moved
upwards on the side of the fuselage, the hazard development within the
fuselage subsides. Thus, the DC-7, which had the fire base on the ground,
generated a much more severe environment than the C-133 which had the fire
base”at the height of the door bottom.

Figure 20 shows a plot of temperature versus time for tests 22 and 24 to
demonstrate the monotonic nature of the heat development. Even in test

24 which showed no smoke development at all, the ceiling temperatures would
still rise noticeably during the test. This was due to two effects. First,
the fire would radiate to the interior even when there was no documented

flame penetration. Second, the model fuselage was not insulated. As a result,
heat could be conducted efficiently through the wall and thereby heat the
interior air. Nevertheless, these effects should have no effect on the con-
clusions developed.

CONCLUSIONS

The use of a 3-foot diameter model fuselage to evaluate the effects of
fuselage rotation and fuel bed height on hazard development leads to four
major conclusions:

1. The opening of an additional door always decreases the measured hazard
from an external pool fire covering an open doorway in a windless environ-
ment .

2. For the specific rotational positions tested on the model, the hazard to
the interior from the external fire is increased as the fire base is lowered
on the side of the fuselage.

3. When the fuel fire base is maintained at a fixed height with respect to
the fuselage, the potential hazard peaks at the position where actual door-
ways are installed in most current aircraft.

4. Noted discrepancies among past tests with a variety of fuselages can be
explained by accounting for differences in door location on the fuselage
circumference and height of the fuel bed relative to the fuselage.
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TABLE 2. TEST CONDITIONS

Averaged Temperaturev
Increase (F°)

Seconds 60 Seconds Visual Observations
283 380 Heavy smoke, flame penetration
6 inches deep
73 117 No smoke
331 591 Heavy smoke, flame penetration
8 inches deep
142 188 Heavy smoke, flame penetration
6 inches deep
219 i 304 Heavy smoke, fire licked along
ceiling
102 137 Light smoke, slight flame
penetration
155 199 Light smoke, some fire pulses
through door
42 80 No smoke, no fire penetration
128 180 Light smoke, flames pulsed into
doorway
37 114 No smoke, no flame penetration
244 348 Heavy smoke, flame penetration
8 inches deep
34 90 No smoke, no flame penetration
148 249 Heavy smoke, flame penetration
8 inches deep
41 112 No smoke, no flame penetration
42 151 Light smoke, little flame
penetration
18 69 No smoke, no flame penetration
29 97 Light smoke, little flame
' penetration
12 58 No smoke, no flame penetration
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FIGURE 1.

COMPARATIVE FULL-SCALE AND

MODEL VIEWS (SHEET 1 of
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FIGURE 1.

COMPARATIVE FULL~SCALE AND MODEL VIEWS (SHEET 2 of

2)



FIGURE 2.

TEST BED FRONTAL VIEWS
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FIGURE 15.

CIRCUMFERENTIAL DISTANCE (ANGLE)
BETWEEN CENTER OF DOOR AND 90°
RADIUS ON FUSELAGE (SEE D IN FIGURE 4)
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AVERAGED TEMPERATURE INCREASE (F©°)
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AVERAGED TEMPERATURE INCREASE (F°)
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FIGURE 17. TEMPERATURE VERSUS FUEL PAN HEIGHT (HIGH DOOR)
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TEMPERATURE VERSUS FUEL PAN HEIGHT (INTERMEDIATE DOOR)
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