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INTRODUCTION

PURPOSE.

The main objectives of the test program were: (1) to study the relationships
between an external fuel fire adjacent to a fuselage opening and cabin
environmental conditions as related to survivability under the varying
effects of fire size, windspeed, and wind direction; (2) to measure the heat
flux and temperatures created by the fuel fire at various fuselage stations
within the cabin for the purpose of defining what test conditions should be
used in laboratory fire tests for cabin materials, and (3) to determine the
relative importance of heat, smoke, toxic gases, and oxygen depletion, from
an external fuel fire, on occupant survivability.

BACKGROUND.

It is believed that a minimum of 15 percent of all fatalities in transport
aircraft accidents are a result of fire (reference 1). There is some
evidence which indicates that in low-impact, highly survivable accidents,
some of these deaths may be attributable to the hazards created by burning
cabin materials. Cognizant of this, the Federal Aviation Administration
(FAA) has, since 1947, placed restrictions on the allowable flammability
behavior of interior materials. The purpose of these regulations is to
minimize the likelihood of an in-flight fire from a small ignition source and
to reduce the flame spread or involvement of the cabin interior materials in
the event of an uncontrollable fire. Periodically, the FAA has upgraded the
flammability requirements as improved fire-resistant materials are developed
and made available for cabin usage. However, a number of accidents have
occurred which reveal the dangers associated with the smoke and toxic gas
emissions generated by the burning interior materials. Smoke accumulation
within the cabin can obscure visibility and seriously impede rapid cabin
evacuation. Some products of combustion are irritants which cause
lachrymation of the eyes and attack the respiratory system. Others, such as
carbon monoxide (CO) and hydrogen cyanide (HCN) are systemic poisons which,
in sufficient concentrations, can be incapacitating and lethal.

There is general disagreement surrounding the role of plastic and natural
materials in cabin survivability and the ability to predict the behavior of
interior materials during a cabin fire based on laboratory tests. The
authors believe these areas of disagreement can be resolved by conducting
realistic, full-scale cabin fire tests. The basic questions that must be
answered are: How do interior materials contribute to the cabin fire hazard,
and how can interior materials be selected to confidently minimize cabin fire
hazards?

Although some full-scale cabin fire tests have been performed in the past,
many have been either insufficient or inconclusive. Others have been 'one
shot" affairs that left more questions than answers. Some have been

unrealistic, uncontrollable, or lacking in basic instrumentation. This has



prompted the FAA to undertake a three-phase, full-scale cabin fire test
program at the National Aviation Facilities Experimental Center (NAFEC),
using a surplus Cl33 cargo aircraft modified into a simulated wide-body
configuration. The first phase, reported herein, consists of determining the
cabin fire hazards arising soley from an external fuel fire adjacent to an
open door in an intact fuselage. The second phase determines, for the same
fuel fire scenario, the involvement and contributions of interior materials
to the overall cabin fire hazard. A 20-foot length of the fuselage in the
fire entry area will be lined and furnished with wide-body materials
including: carpeting, seats, sidewall panels, overhead stowage bins, and
ceiling panels. This configuration of materials will be subjected to a fire,
selected during the first phase, which produces a previously determined cabin
hazard. In this manner, the additional hazards attributed to the burning
interior materials (for this specific scenario) can be established. The
third phase will consist of burn tests on large, single samples of interior
materials for correlation with laboratory tests.

DISCUSSION

TEST ARTICLE.

A surplus United States (U.S.) Air Force Cl33A cargo aircraft, with the wings
and tail surfaces removed, was utilized as the test article. This aircraft
provided internal dimensions similar to those of wide-bodied jets currently
in airline service. The Cl133 fuselage diameter is 200 inches, and internal
usable length for test purposes is approximately 118 feet (figure 1). The
fuselage cargo area was modified by the installation of a metal-covered
plywood floor and a fire-resistant ceiling to provide an 8-foot
floor-to-ceiling height. The cockpit area was sealed off and not used during
the test program. The modification of the cargo area resulted in a
calculated volume of interior airspace of 13,200 cubic feet (ft3)-

The fuselage was further modified by the addition of two door openings on the
right-hand side of the aircraft. The forward door opening was 76 inches high
and 42 inches wide and was the location used for the external test fire
penetration. The rear opening was a type A configuration and provided an
exit point for smoke and gases to exhaust into the atmosphere. This opening
had a hinged door that was normally open and a square wooden barrier external
to the opening to prevent extraneous wind gusts from affecting flow
characteristics through the fuselage. These openings were approximately 60
feet apart.

On the left-hand side of the fuselage were two escape hatches (each 27 by 21
inches). The hatches were covered by an aluminum, box-like windbreak with an
open bottom. These windbreaks provided the same protection as the rear door
wind barrier. The test article rested on the aircraft landing gear tires,
and jacks were used under the rear of the fuselage to maintain a level



attitude. The rear cargo door remained operable throughout the test program
to allow installation and removal of large equipment or instrumentation as
required.

To prevent erroneous data from being obtained during test fires due to
ignition of the normal combustible components of the aircraft, such as wiring
etc., and to prevent the aluminum fuselage shell from possibly melting, the
fuselage was completely stripped of these items and the interior walls
covered with fire-resistant materials (Kaowool® insulation and fiberglass
cloth, figure 2). The area surrounding the forward fire opening had
additional protection in the form of a Refasil® fireproof covering around the
door frame and over the ceiling material. The actual test section was
approximately 76 feet long.

Station numbers used in this report have no relation to aircraft manu-
facturers' station numbers and represent a scale containing l-inch increments
along the test section originating at the forward end of the installed floor.
Entrance to the test article was through the normal crew entrance door on the
right side of the fuselage.

EXTERNAL FIRE SOURCE.

The external fire was provided by a measured amount of jet fuel (JP-4) placed
in steel pans of various sizes located on a framework adjacent to the fire
door. The fire pan was located at the bottom edge of the door, rather than
on the ground, in order to best assure that a solid sheet of flame would
cover the entire door opening, as would result from a large ground fuel fire.
There were four pans, all having a 4-inch-sidewall height. These pans were
used singly or grouped together to provide the necessary area required for
any particular test (figure 3). Pan sizes were as follows: two 6- by 4-foot
pans and two 8- by 2-foot pans.

INSTRUMENTATION TRAILER.

The instrumentation trailer was positioned at the forward left-hand side of
the fuselage. The trailer housed the visual readout faces of the CO and
carbon dioxide (CO,) concentration analyzers, the oxygen (0,) concentration
readout and amplifier, sample flow-control flowmeters and valves, various
direct current (d.c.) voltage power units, the computer analog-to-digital
converter, patch panels for the thermocouples, and other d.c. millivolt (mV)
output instrumentation used during testing. Activation of fire-extinguishing
components (both CO, and aqueous foam) along with the vacuum pump for the gas
sampling lines were also controlled from the trailer. The test director and
interested observers were able to view the fire area on closed-circuit video
monitors installed in the trailer (figure 4).

FIRE-EXTINGUISHING SYSTEM.

The fire-extinguishing capability on the test fuselage was provided by two
different systems. The primary system was a COp system that protected the



entire test article (figure 5). The fuselage was divided into four fire
protection zones: (1) the fire pan area, (2) the above-test section ceiling,
(3) the test section, and (4) below-test section floor. All zones utilized
Atkomatic "DYMO'"® 15,000 series solenoid valves to control agent discharge,
which were mounted immediately upstream from discharge points and
electrically controlled from the instrumentation trailer. The fire pan area
had one discharge nozzle positioned to direct CO) toward the fire at an angle
that would prevent burning fuel being blown out of the pans during agent
discharge. The above ceiling system was a 0.75-inch-diameter perforated
copper tube mounted on the aircraft structure with the agent discharge being
directed downward toward the installed ceiling. Separate control was
provided for the forward and aft sections, with the dividing point being the
center wing section. Test section protection was provided by four discharge
nozzles mounted on the upper left-hand interior wall, positioned to cover the
floor area below. Each nozzle could be activated individually as required.
Underfloor protection was from a single discharge nozzle mounted on the
left-hand sidewall (figure 5). The second extinguishing system was used
strictly to extinguish the external fire. The agent was a mixture of
6-percent aqueous film-forming foam (AFFF) mixed with water. This system
proved more effective in extinguishing the pan fire than COy, since an>
slight ambient wind would blow the CO, away from the fire. The system
consisted of a 1,000-gallon storage tank pressurized to 90 pounds per square
inch (psi), an electric solenoid discharge valve, and four spray nozzles. A
spray nozzle was positioned at each corner of the fire pan configuration and
adjusted to cover the entire surface of the pans with foam upon actuation.

WIND GENERATOR.

When required, simulated ambient wind through the fuselage fire penetration
opening was provided by a 36-inch-diameter fan mounted adjacent to the test
article. A transition duct was attached to the fan outlet to distribute the
air uniformly through the opening. The velocity of the simulated wind was
controllable by the insertion of orifice plates in the fan outlet duct. Fan
operation could be either continuous or intermittent (figure 4).

TEMPERATURE MEASURING SYSTEM.

Test section temperatures were monitored using chromel/alumel (type K)
thermocouples installed at various test section stations and elevations.
Temperatures in the area exposed to the test fire were measured using Ceramo
thermocouples. The remaining thermocouples were 24-guage glass-on-glass-wire
type. Figure 6 shows the location of cabin air thermocouples, while figure 7
indicates the location of ceiling thermocouples.

SMOKEMETERS.

Two smokemeter racks, consisting of three smokemeters each, were designed,

assembled, and installed in the test section by project personnel (figure 8).
The forward rack was positioned at test station 510, and the aft rack at test
station 910. The smokemeters were mounted on the racks as follows: highest=--



68 inches above floor, middle--=42 inches above floor, and lowest--18 inches
above floor. Each smokemeter assembly primarily, consisted of a light source
and light receiver unit. The latter was an airtight chamber containing a
Weston 865YR photocell. The photocell was positioned behind a heat-resistant
glass window to protect the cell. The chamber was insulated with Kaowool and
cooled by a low-pressure airflow during the test. Light to the photocell was
provided by a N-3C gunsight bench collimator attached to a 12-inch-long metal
tube that was connected to the photocell chamber. This 2.6-inch-diameter
tube had four 10.5- by 0.75-inch slots incorporated lengthwise at 90°
increments on the tube. These slots allowed smoke to pass between the
photocell and the collimated light source (figure 9). The reduction in light
transmission produced a calibrated millivolt signal from the photocell.

Prior to each test, the photocell windows and collimator lens were cleaned of
soot accumulation from the previous test.

HEAT FLUX SYSTEM.

Nine Hy-Cal® asymptotic rapid-response calorimeters were installed in the
area of the test fire penetration (figure 10). The calorimeter units were
installed in a copper water jacket with only the face exposed to the heat
(figure 11). Fire-resistant wire was spliced to the normal signal wire and
the splices inserted into the water jacket cavity which was then filled with
Kaowool insulation. Cooling water was circulated through all units during
the test and exhausted overboard.

GAS ANALYSIS SYSTEM.

Test section gas analysis was performed using instrumentation specifically
designed to measure concentrations of CO, COy, and O9. Gas samples were
drawn through the sampling system by a vacuum pump installed downstream of
the analyzers. Samples entered the system through a 0.25-inch outside
diameter (o.d.) copper tube installed at a selected test station. A filter
was installed in this line to remove large carbon particles from the sampling
stream. After passing through this filter, the gases were directed to the
individual analyzers through identical tubing. Each line contained a 15-
micron steel filter in the portion of the line above the test section floor
(figure 12). Prior to entering the analyzer protective cabinet beneath the
floor, an additional 0.2-microfilter was installed in each line to prevent
any contaminants from entering the analyzer sample cell. The CO and COq
concentrations were measured using Beckman Model 865° infrared analyzers.
Oxygen concentration was measured utilizing a Beckman Model 715® process
oxygen monitor. The sensor for the 0Oy system was installed in the analyzer
cabinet and the amplifier in the instrumentation trailer. Upon leaving the
analyzers, the sample gases were routed to the instrumentation trailer where
the proper flow rate was maintained using Dwyer adjustable flowmeters.
Downstream of the flowmeters, the sample passed through the vacuum pump and
was exhausted to atmosphere. Location of the two sample stations are shown
in figure 13. At the forward station, samples were taken at 5 feet 6 inches
and at the ceiling, while the aft sampler point was at 5 feet 6 inches.



WINDSPEED AND DIRECTION.

Windspeed and direction were continuously monitored during testing utilizing
two independent indicating systems. Both systems used a '"cup and vane
assembly' as the sensing units. These units were separated to prevent fire-
generated thermal currents from producing erroneous readings during testing.
The forward unit was mounted above the cockpit area of the fuselage and was a
Taylor "Windscope"® with a single-dial, dual selection and calibration
capability. The aft system was an electric speed indicator type FAA-377 with
noncalibratable dual-dial readout. Both directional and speed indicators
were located in the instrumentation trailer.

VISUAL RECORDING.

A closed-circuit video system was utilized to allow viewing of the fire from
a protected area. Two Sony black-and-white cameras were installed external
to the fuselage to view the actual fire area. One camera was mounted on a
platform on the opposite side from the fire location and viewed the fire
through a heat-resistant glass window installed in the fuselage sidewall at
floor level. The second camera was mounted on a shelf located under a hood
that projected up through the rear cargo door. The fire area was viewed
through a glass window installed in the hood. A third Sony color camera was
placed on a tripod, a distance from the fuselage, viewing the fire and
forward portion of the test article (figure 14). The color and black-and-
white pictures were monitored in the instrumentation trailer as well as being
permanent ly recorded in a television viewing room in a separate trailer.

TEST DESCRIPTION AND SCENARIO

The scenario selected consists of a low-impact, highly survivable crash
resulting in an external fuel spill fire adjacent to an opening in an
otherwise intact fuselage. Figure 15 is a photograph of a typical test. As
shown in the photograph, even a fuel fire of moderate size produces high
flames and thick smoke and would appear to be overwhelming.

During all tests, the aft exit door and both escape hatches remained open.
The test duration was approximately 4.5 minutes. The quantity of fuel (JP-4)
placed in the fire pans was such that the fire would not decrease in
intensity at the end of the test (50 gallons for an 8- by 10-foot fire).

PRELIMINARY TESTS.

A number of preliminary tests were conducted in order to checkout the
facility and all instrumentation. After this initial checkout, 13 tests were
conducted with a windbreak enclosing the test fire. It was determined that
the windbreak was not effective (appendix B); therefore, it was removed. All
test results reported herein are with the externmal fire in an open
environment.



PRIMARY TESTS.

A total of 59 tests were conducted without shielding ambient wind at the fire
door. Table 1 lists all tests and wind conditions. During some of the

tests, a simulated wind was supplied by the external fan. Those tests are
noted in the table.

TEST RESULTS

WIND EFFECT.

The wind was the single most important factor affecting the environmental
conditions in the cabin during testing. Figures 16, 17, and 18 show the
effect of wind on cabin air temperature using 4-by 6-foot, 6-by 8-foot, and
8- by 10-foot fires, respectively. The thermocouple plotted was 5 feet 6
inches high, 10 feet aft of the fire door and at the fuselage centerline.
Windspeeds were averaged for the test duration. Windspeed listed in the
parenthesis is the component of the windspeed entering the door perpendicular
to the fuselage. Figure 19 shows the conversion for a typical test of the
windspeed direction to the corrected windspeed perpendicular to the door.

Generally, the greater the wind towards the fuselage opening, the greater the
hazard in the fuselage. However, exceptions to that rule were noted; one in
particular, during test number 32, is seen in figure 17. Although the
average windspeed and the corrected windspeed were lower than other tests,
using the same size fire, the temperature at 5 feet 6 inches height, 10 feet
from the fire door at the fuselage centerline was three to four times higher
than those of the other tests.

A study of films of these tests and a comparison of windspeed and doorway
heat flux indicate that wind fluctuation and drafts through the fuselage play
an important role in flame penetration into the cabin. The heat-flux/
windspeed comparison for tests 32 and 55 are shown in figure 20. These data
indicate the effect of wind fluctuation on heat and flame penetration into
the cabin. The most dramatic example of this is the last minute of test 55.
The sudden gust of wind caused sustained flame penetration, although steady
winds of the same magnitude had not.

One positive statement can be made about the effect of the wind on the
internal cabin hazard. When the windspeed is near or at zero, little or no
fire penetration occurs, and conditions in the cabin remain relatively safe
for the entire test duration. No exceptions were encountered to this during
the test program.

It should be noted that although only temperature and heat flux have been
discussed so far, it is only because of their ease of measurement and

availability. The smoke and measurable toxic gases generally followed the
same pattern (as will be shown later). It can be said that no tests were



TEST NUMBER

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
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38
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TABLE 1.

PAN SIZE
(feet)
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FULL-SCALE TEST SUMMARY

WINDSPEED
AND DIRECTION

8 mph

1-3 mph SE
Inoperative
7 mph SSW
Inoperative
20-28 mph SW
5-10 mph NNE
5-8 mph NNW
4-12 mph NW
2 mph NW
3-14 mph N
5-18 mph WSW
0 mph

0-2 mph

2-4 mph NE
0-1 mph S
2-13 mph

3-7 mph WSW
4-12 mph WNW
1-4 mph S
2-4 mph S
0-1 mph W
3-5 mph NW
0-10 mph WNW
4-8 mph WNW
3-7 mph NE
Inoperative
0 mph

3 mph NNE-NNW
5 mph NNE-NNW

FAN SPEED

6 mph on at 100 sec



TEST NUMBER
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FULL-SCALE TEST SUMMARY (Continued)

0o 00 0o OO0 Oo OO0 OO OO0 Oo OO Qo

WINDSPEED
AND DIRECTION

1-10 mph S
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encountered where large amounts of smoke and little heat, or the inverse,
entered the cabin.

EFFECT OF FIRE SIZE.

By varying the fire size, the effect of the wind on the fire also varied.

The smaller the fire, the greater the bending of the flame by the wind
(figure 21). The heat flux in the doorway shows more penetration through the
lower area of the door for the smaller fires, indicating a greater bending of
the flame. Therefore, although a smaller fire puts out less heat, smoke, and
toxic gases than a bigger fire, a larger portion of the smaller fire can
penetrate a fuselage opening for a given wind condition.

Since, for the sake of realism, it was desirable to simulate a large external
fuel fire adjacent to a fuselage opening, a determination as to what size
fire constituted a large or infinite fire had to be made. Modeling
experiments conducted at NAFEC (reference 2) provided data on thermal
radiation through a fuselage opening geometrically similar to the C133 from
an infinite fire under quiescent wind conditions. Figure 22 shows the heat
flux at a height of 3 feet 6 inches at the centerline of the Cl33 fuselage
for the various fire sizes with zero wind. As the fire size was increased,
the radiant heat increased. The largest practical fire size which can be
tolerated without jeopardizing the fuselage integrity is that produced by a
8- by 10-foot pan. As shown in figure 22, the radiant heat from the 8- by
10-foot fire was about 80 percent of the value produced by an infinite fire.
Based on modeling experiments addressing thermal radiation through the
fuselage opening, the C133 8- by 10-foot pan fire is representative of a very
large external fuel fire.

CABIN ENVIRONMENTAL CONDITIONS.

The cabin environmental conditions fall into two catagories: (1) conditions
affecting passenger survivability directly (air temperature, smoke density,
and toxic gas concentration), and (2) conditions affecting material
involvement (heat flux and temperature around fire opening).

SURVIVABILITY.

As stated previously, the cabin hazard is dependent upon ambient wind
conditions and fire size with zero wind or with the fire downwind of the
fuselage. Very little hazard from the fuel fire alone is created in the
cabin. However, with the wind blowing a fire adjacent to a fuselage toward
an opening, a serious cabin hazard can be created very rapidly.

The DCl10 accident at Los Angeles International Airport in March 1978 has
imparted credibility to the scenario used in this study which was selected
prior to the date of the accident. (References to the Continental DCIO
accident were from observations made by the author during his participation
in the NTSB investigation of the accident.) The accident, caused by tire
failure, created a large fuel fire on the left side of the intact fuselage.
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Fortunately, the wind direction was from the right side, which caused the
major portion of the fire to be bent away from the fuselage. Although
portions of the external aluminum skin were melted, the fire did not
penetrate the fuselage shell, composed of skin, structure, insulation, and
interior paneling, over the time of fire exposure (foam was applied "within
100 seconds after ignition" (reference 3). The cabin interior was not
ignited although there were open doors next to the intense fire. There was
no evidence of flame penetration into the cabin. Any damage to the interior
appears to have resulted from radiation through door openings and some of the
windows which eventually melted through. Flames also did not penetrate these
window openings. Thus, the C133 scenario consisting of an intact, nonmelting
fuselage with an external fuel fire adjacent to an open door is very similar
to the DCl0 accident. :

The cabin conditions resulting from that accident are similar to those found
in the C133 under similar wind conditions (little temperature rise, little
smoke, and radiant heat near any opening adjacent to the fire) (figure 23).
Less smoke should be expected in the Cl33 tests, since no materials were
present to char. Thus, smoking of some the materials occurred during the
DC10 fire. Zero-wind conditions created the same type of cabin environment
as a wind blowing the fire away from the fuselage (figure 24). A wind
blowing the flame toward the cabin can very quickly create a serious hazard
in the cabin,

Figure 25 represents the temperature, smoke, and heat flux from the worst
test conducted, test number 32. During this test, the windspeed was 5.5
miles per hour (mph) out of the southwest with a corrected windspeed of 4.07
mph. The fuel pan size was 4 by 6 feet. Since the fire scenario and
fuselage configuration of these tests represent one of an infinite number of
possibilities, the quantitative measurements mean only that they are
obtainable levels dictated by the ambient wind and cabin draft conditions.

An important study in these tests was that of the flow of hazards through the
cabin, namely: heat, smoke, and gases.

HEAT. A major finding of this test program is the stratification of cabin
hazards that occur during a cabin fire. Significant stratification occurred
for all fire sizes and wind conditions. The most significant stratification
was with high winds pushing the flames toward the fuselage, since that
condition produced the highest interior cabin termperatures. A temperature-
time plot of seven symmetry plane elevations located 50 feet aft of the fire
door is shown in figure 26. Note the distinct layer of hot gases that
extended from the ceiling down to the 6-foot level. The hot upper layer
eventually heated the much cooler lower layer and some mixing occurred. This
generally increased the temperature of the lower levels. Figure 27 is a
replot of the data from figure 26 and is a better indication of the mixing
process. The upper layer of hot gases was very distinct, and the gradual
heating of the lower region with time was quite evident. Figures 28 and 29
are different representations of data indicating the cabin temperature from
the fire door through the cabin to the aft exit. There is a large increase
in temperature early in the tests (1l minute) near the fire door, with very
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little increase during this time near the exit door. However, after this
initial period, the rate of temperature rise for a given height was fairly
constant throughout the cabin (figure 28).

SMOKE. The only measurement of smoke taken during this test program was its
effect on visibility (the amount of light reduction over 1 foot). 1In all
tests conducted, a large degree of stratification of the smoke occurred. The
ceiling and sidewall remained fairly clean. Figures 30 and 31 show smoke
stratification during a typical large pan fire test with the wind blowing the
flame toward the opening. The "A" portion of both figures show smoke levels
30 feet from the fire. The amount of stratification can easily be seen at
that location. The "B" portion of the figures is the smoke level at 60 feet
from the fire door adjacent to the exit door. A great deal of mixing and
turbulence occur in that area as evidenced by the 5-foot 6-inch and 3-foot
6-inch smoke levels eventually equalizing. Even with the mixing, the smoke
level at 1 foot 6 inches remained much less than the higher elevations.

GASES. Practically no significant CO concentrations were measured during any
of the tests. A peak of 5,000 parts per minute (ppm) of CO was measured
during the most severe fire condition. That measurement was taken 30 feet
from the fire at the fuselage centerline and at the ceiling. For the same
location, CO was not detectable (at the 5-foot 6-inch level). (The gas
analyzer, Beckman Model 864 , was sensitive to concentrations less than

100 ppm). Thus, there was very significant stratification of CO within the
cabin. COj was measured at both heights in amounts far below human tolerance
limits, with concentrations at the ceiling larger than at 5 foot 6 inches.
The amount of 0, depletion at this station was also insignificant. As
expected, the lowest 09 concentration was detected at the ceiling, but never
dropped below 18 percent. Five-foot six-inch levels never dropped below 20
percent. The analytical procedures routinely used for measuring toxic gas
emission from cabin materials (reference 4) were applied during several tests
(test 66 through 70). Only trace amounts of nitrogen dioxide (NO,) and

sul fur dioxide (SOz)Iwere measured, but no HCN was detected.

TOTAL CABIN HAZARD.

Increases in cabin temperature were accompanied by corresponding increases in
smoke and toxic gases (CO, COy) and 0O, depletion. Figures 32, 33, and 34
show the relationship between heat and smoke in the cabin due to an external
fuel fire. In figure 32, the light reduction is plotted versus temperature
increase for six 8- by 10-foot fire tests. There are 40 points per test
shown (a point every 6 seconds of every test). Figure 33 is a plot of the
total temperature versus total smoke measurements for those same six tests.
The total temperature is the area under the temperature curve, and the total
smoke is the area under the optical density curve. The smoke and temperature
for figure 34 were calculated in the same manner as for figure 33. Figure 34
shows that the relationship between the total smoke and temperature holds
true for all levels, not just 5 feet 6 inches.

12



When cabin hazards are dominated by an external fuel fire, it is apparent
that smoke and heat are individually greater deterrents than toxic gas (CO)
to survivability. Take the cabin location 30 feet aft of the fire at a
height of 5 feet 6 inches (figure 32). A temperature of 300° Fahrenheit (F)
produces a light reduction from smoke of 75 percent at certain test times
depending on the wind velocity. This temperature would make "mouth breathing
difficult" (reference 5) and the smoke would obscure visibility of a
backlighted sign beyond 6 feet (reference 6). However, even if the CO
concentration was near the measurable threshold limit of 100 ppm, there would
be "no poisoning symptoms, even for long periods of time" (reference 7).

MATERIAL INVOLVEMENT.

Data from three tests will be presented: (1) zero wind with large (8- by
10-foot) fire (test 62), (2) the worst test in terms of cabin hazards (test
32), and (3) the worst large (8- by 10-foot) fire in terms of cabin hazards
(test 66).

Two main considerations should be given as to whether cabin material will
ignite from an external fire; (1) heat flux levels, and (2) flame
impingement. During test 32 and 66, flames entered the cabin quite
extensively. With zero wind, test 62, very little flame penetrated into the
cabin. Figure 35 shows heat flux levels around the doorway, as per figures
10 and 11, for the zero wind condition. Heat flux readings ranged as high as
15 British thermal units per square foot second (BTU/ft2?-s) in the doorway
and 0.6 BTU/ft2—5 across the fuselage on the opposite wall. Figures 36 and
37 show the heat flux levels in the same locations as figure 35 for tests 32
and 66, respectively. Much higher heat flux levels were obtained in the
cabin than during test 62. During test 32, flames reached past the
centerline of the fuselage, causing very high heat flux levels in that area.
The temperature profiles shown in figure 38 indicate that flame impingement
at the ceiling centerline occurred for test 32.

SUMMARY OF RESULTS

From the full-scale fire scenario studied, there are five important findings
with regard to the cabin hazard characteristics of an external fuel fire:

1. Ambient wind conditions dictate the hazard created in the cabin,

2. Significant stratification of heat, smoke, and toxic gases occur in
the cabin,

3. Heat and smoke individually are more hazardous than carbon monoxide

in the cabin,

4, Oxygen depletion is insignificant when the cabin is ventilated, and
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5. Fire size dictates the radiant heat level through a cabin opening
under zero-wind conditions.

CONCLUSIONS

1. Major stratification of hazards occur in the cabin when the hazards
are created by an external fuel fire.

2. Ambient wind determines the amount of hazards entering a cabin due
to a given external fuel fire.

3. When cabin hazards are dominated by an external fuel fire, smoke
and heat are individually greater deterrents than toxic gas (CO) to
survivability.

4, High heat flux levels can be encountered in and around the fire
entry door with very little increase in cabin hazards.
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FIGURE 15. TYPICAL TEST FIRE
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(OPTICAL DENSITY PER FOOT dt )
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2. 0_
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0,5=1ft0in 3 ft 6 in
'TEST 66
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0 T T T T T T 1
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FIGURE 34, TOTAL SMOKE VERSUS TOTAL HEAT FOR VARIOUS FUSELAGE HEIGHTS
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FIGURE 36.
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APPENDIX A

DATA ACQUISITION AND REDUCTION SYSTEM

The data acquisition and reduction system was a Nova 3 computer with the
following peripherals:

1.

2.

3.

4.

Wide-range A to D converter (128 channels)
Dual diskette drives
¥X-Y plotter

Teletype

The acquisition and reduction of data were handled separately. Figure A-1 is
a flow chart of the data acquisition program, and figure A-2 is a flow chart
of the data reduction program.



INPUT TEST NUMBER
AND DESCRIPTION

1

GAINS SET
BY PROGRAM

CHANGE

YES

GAINS ?

MONITOR

YES

INPUT
CHANGES

CHANNELS
?

INPUT CHANNELS
TO BE MONITORED

READ
CHANNEL ZERO

LESS THAN 0.5V

MORE THAN 0,5V

READ ALL
CHANNELS

l

OUTPUT MONITORED
CHANNELS, IF ANY
TO TELETYPE

WAS

CHANNEL ONE
STORED ?

STOP

!

WRITE ON

& TELETYPE

DISKETTE

79=42-A-1




INPUT TEST NUMBER
NUMBER OF BLOCKS,
MV CORRECTION

| |

INPUT CHANNELS TO
BE PLOTTED AND

CALCULATED
[ ]
SELECT TYPE
OF INPUT
\
1 ] v Y Y 1 Y |
THERMO HEAT WIND- WIND
SMOKE (ofe) co2 02
COUPLE FLUX SPEED | | DIR,
[ ] [ ] [ ] [] 1
SELECT| |SELECT|| SELECT INPUT INPUT
TEMP, BTU OPTICAL || RANGE | | RANGE
RANGE RANGE || DENSITY || OF OF
OR % Y-AXIS Y-AXIS
LIGHT
|
1
PLOT TIME
VS. DATA
\
PAUSE
MORE YES
PLOTS ?
NO PLOT YES
STOP = DIFFERENT

\\\\\\Ezifj;j>////
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APPENDIX B

PRELIMINARY TESTS WITH WINDBREAK

Fourteen tests were conducted with a wind barrier around the external fuel

fire (figure B-1). The wind barrier was used in hopes of minimizing the

effect of variable ambient wind conditions. A fan was used to supply a
constant controllable simulated wind.

Figure B-2 shows data from five '"identical" tests.

Two families of curves
are evident.

For one family, the flames continuously penetrated into the
cabin, resulting in an ever-increasing cabin temperature: however, for the
other family, the flames penetrated for about a minute at the beginning of
«#Ahe test but later receded, and the resulting cabin temperature leveled off.
,The two-family behavior was probably related to the ambient conditions,
90551b1y in combination with the steel-covered wind barrier. However, no
‘correlation could be made with measurement taken during each test of ambient
vw1ndspeed and direction, temperature, and relative humidity. Therefore,
there was no apparent means of predicting which of the two family curves
*would exist under a given set of ambient conditions.

For this reason, the
‘wind barrier was removed for all subsequent testing.
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C-10

Cc-11

c-12

APPENDIX C

A PICTORIAL ACCOUNT OF THE PROGRAM

Cl133 Test Article

Fuselage Interior, Prior to Installation of Test Section Floor,
Fire Resistant Sidewall Coverings and Ceiling

Fuselage Interior, After Installation of Floor and Protective
Coverings

Early Morning Test Fire

NAFEC Fire Captain Abou; to Ignite Fire Using Wick
Typical External Fire

Test Fire with Full Door Coverage

Effect of Wind Gust on Test Fire

Interior View of External Test Fire

Test Fire Extinguishment Using CO,

Posttest Fire Damage (Test 72)

Fuselage Repair of Damage Caused During Test 72

c-1
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FIGURE C-4. EARLY MORNING TEST FIRE FIGURE C-5. NAFEC FIRE CAPTAIN
ABOUT TO IGNITE FIRE USING WICK

FIGURE C-6. TYPICAL EXTERNAL FIRE FIGURE C-7. TEST FIRE WITH FULL-
DOOR COVERAGE

Cc-5



FIGURE C-8. EFFECT OF WIND GUST ON FIGURE C-9. INTERIOR VIEW OF
TEST FIRE EXTERNAL TEST FIRE

FIGURE C-10, TEST FIRE EXTINGUISH-
MENT USING COj

C-6
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