Radiant Panel Update

Presented to: International Aircraft Materials Fire

Test Working Group Meeting

By: Steven Rehn Date: 6/7/2016

Introduction

Round Robin

Most of the test results are in.

- Varied openings around the sliding platform to test how it affected air flow and material test results.
- Future Work

Round Robin

- Materials sent out to 28 labs (including FAA)
- 24 Responses so far
- 12 samples for each lab

Metalized PEEK

Unmetalized PEEK

Metalized PEEK w/ Tape

Polyimide

Polyimide

Polyimide

FAA's test result

Same test, completely different results.

- New handbook has a larger drawer length compared to the current handbook.
- This was done to allow less air to flow into the chamber during testing.
- Larger drawer isn't necessary the openings around the drawer are what we need to standardize.
- We ran some tests to see how changing the size of these openings affects calibration and test results.

Normal openings around the FAA's radiant panel

Left	Right	Front	Back
5/16"	1/8"	0"	2.25"

Closed off left, rear, and right gaps

Gaps around the drawer fully open

2.125" Left Gap

1.875" Right Gap

	Closed Around Drawer	Normal Around Drawer	Open w/ ~2" Gap on Each Side	
Open Area Around Drawer(in²)	2.09	123.77	183.44	
Panel Set Point (°F)	1096	1105	1137	
Heat Flux (BTU/ft²s)	1.501	1.502	1.495	
Chamber Temperature(°F)	381	366	425	
Chimney Air Velocity (FPM)	205	260	278	

Openings Around Drawer: 2.125" left, 1.875" right, 2.25 rear

Set Point (°F)	1095	1110	1125	1137
Heat Flux (BTU/ft ² s)	1.398	1.439	1.481	1.495
Thermocouple (°F)	385	395	410	425
Chimney (FPM)	245	255	268	278
Under Right Side of Drawer (FPM)	90	91	95	95
Under Left Side of Drawer (FPM)	65	60	65	65

 As the panel temperature increases, the air flow into the chamber increases causing you to need to increase the panel temperature further to compensate

Future Work

- Continue conducting tests with 3 different air gap levels
 - Fully open
 - Partially open
 - Fully closed
- Place 3 anemometers in the chimney for more accurate air velocity measurements
- Place array of thermocouples in the retaining frame to test how material temperature changes
- More material tests

Future Work

Boeing's proposal for thermocouple array:

- Place thermocouples through an insulation board placed in the retaining frame at the same level as the test sample
- Test at all 3 air gap levels

Future Work

- Statistically determined that at least 20 samples of a material would be required at each air gap level to get the best results
- 60 samples total

```
One-way ANOVA
Alpha = 0.05 Assumed standard deviation = 1

Factors: 1 Number of levels: 3

Maximum Sample Target
Difference Size Power Actual Power
0.5 79 0.8 0.804941
0.8 32 0.8 0.811864
1.0 21 0.8 0.814770

The sample size is for each level.
```

Questions?