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Development of a New Flammability Test for Magnesium Alloy Cabin Components Located in 

Inaccessible Areas 

 

In recent years, magnesium alloys have been suggested as substitute for aluminum alloys in 

aircraft seat structure, as well as other passenger cabin applications, due to the potential for 

weight savings. The FAA’s central concern regarding the use of magnesium alloys in the cabin is 

flammability. The current regulations do not address the potential for a flammable metal to be 

used in large quantities in the cabin.  Therefore, if such a material was introduced into the 

cabin, the FAA must be convinced that the level of safety would not be reduced.  Recent 

developments in materials technology have shown that different magnesium alloys have 

different susceptibility to ignition.  However, magnesium remains a material that, once ignited, 

is very challenging to cope with using fire extinguishers currently available on aircraft.   

 

In 2003 the FAA implemented new flammability standards for thermal acoustic insulation, 

which is located throughout aircraft fuselages, primarily in inaccessible areas.  Additionally, the 

FAA is planning to introduce new flammability standards for other high-volume materials 

located in inaccessible areas, such as wiring insulation, air ducting, and non-metallic fuselage 

structure.  The use of magnesium alloy in these inaccessible areas would also be required to 

exhibit self-extinguishing properties.  In order to better evaluate their propensity to ignite and 

ability to self-extinguish, a preliminary assessment of several magnesium alloys was conducted 

using the radiant panel flame propagation apparatus used for testing thermal acoustic 

insulation.  The test rig consisted of an electrically-powered radiant heat panel, and a propane-

fired pilot flame.  Test samples were situated horizontally on a sliding platform.  Three 

magnesium alloys having previously demonstrated good resistance to ignition were evaluated 

(WE43, Elektron 21™, and ZE41) along with 2 poor performing alloys (AZ31 and AZ80).  

Experimentation with various sizes and thicknesses of test samples followed, to determine their 

flammability characteristics.  After careful trialing, a test condition was created using a 0.025-

inch thick sample measuring 3 by 6 inches.  The test sample was inserted into the radiant panel 

apparatus, and the pilot flame was applied for 120 seconds (figure 1).  Following pilot flame 

exposure, the sample remained under the radiant panel for an additional 120 seconds (240-

second total test time). 

 



 
 

Figure 1.  3- by 6-inch Test Sample Inside Radiant Panel Apparatus 

 

Following initial testing, refinement of the sample holder proved to produce more repeatable 

results.  Other parameters such as time of ignition, time of self-extinguishment, and sample 

weight loss were also studied.  Due to the subjectivity of measuring extinguishment time, it was 

eliminated from the test as a requirement.  Calculating the sample weight loss proved to be a 

more accurate assessment of how much burning occurred during the test.  Based on the 

hundreds of tests conducted by the Fire Safety Branch, a value of 30% weight loss was 

proposed as the maximum allowable weight loss (figure 2).  The test method was introduced 

into the Aircraft Materials Fire Test Handbook in October of 2018, allowing manufacturers to 

begin experimentation at their facilities.  An interlab study is planned for 2019, in which 

identical samples are provided to participating labs, to better determine the reproducibility of 

the new test method. 



 
 

Figure 2.  Weight Loss Results of 3 Magnesium Alloys 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Progression of the Vertical Flame Propagation Test Method for Composite Fuselage 

Structures and Inaccessible Area Materials 

 

In 2003 the Federal Aviation Administration (FAA) implemented new flammability standards for 

thermal acoustic insulation, which is located throughout aircraft fuselages, primarily in 

inaccessible areas.  An additional effort is currently underway to elevate the flammability 

requirements for all other high-volume materials located in inaccessible area of the cabin, 

including wiring insulation, air ducting, and non-metallic fuselage structure.   Prior to the 

development of the Boeing 787 Dreamliner, all passenger carrying aircraft utilized aluminum as 

the fuselage primary construction material.  However, the 787 utilized carbon fiber reinforced 

polymer (CFRP) in the construction of the fuselage skin and structural components.  The use of 

this non-metallic material has lead the FAA to develop a flammability standard for the basic 

fuselage structure, which had previously not been necessary.  The Fire Safety Branch conducted 

intermediate-scale flammability tests on CFRP panels using a variety of ignition sources and 

configurations. Following these experiments, a laboratory-scale flammability test method was 

developed to simulate the conditions found during the intermediate scale tests. The new test 

utilized a vertically-oriented test sample, which was exposed to a radiant heat source and 

piloted ignition on the bottom edge. The Vertical Flame Propagation (VFP) test apparatus was 

refined over the course of several years, and replicate apparatuses were fabricated by the Fire 

Safety Branch and supplied to Boeing and Airbus for comparative testing at their facilities.  The 

scope of the test apparatus was recently broadened to measure the flammability of wiring 

insulation and air ducting, both of which are used extensively in the inaccessible areas of the 

cabin.  A commercial VFP apparatus has also been developed, and contains an 875-watt radiant 

coil furnace that is mounted in front of a six-inch by twelve-inch test sample.  Improvements 

have been made in the construction of the VFP apparatus shown in Figure 1.  A much more 

robust methane-air ribbon burner now replaces the six-flamelet pilot burner situated in front of 

the radiant furnace.  The stronger and more severe flame from the ribbon burner produces a 

more realistic fire as compared to the original pilot burner. The previous pilot burner was 

shown to be biased towards the burning test samples, resulting in a decreased flame, whereas 

the new ribbon burner produces a continuous fire throughout the test.  This ribbon burner 

impinges on the lower portion of the test sample for only 30 seconds, instead of the original 50 

seconds, and is then translated away from the test sample.  The impingement time was 

shortened to balance the increased severity of this flame.  With this new flame the test has 

become more robust, resulting in increased confidence in the performance of the test 

apparatus, ensuring only high performance materials are permitted for use in the inaccessible 

areas.  Acceptable materials include those that show the fire remains localized and does not 

propagate extensively along the sample. 



 
Figure 1. Schematic of the Vertical Flame Propagation (VFP) Test Apparatus 

 

The VFP is now capable of testing 11-inch long wire samples due to a newly developed wire 

sample holder.  The procedure for testing these wires as well as air ducts of various diameters 

remains the same as for testing the non-metallic structural composites: the ribbon burner 

flame impinges on the sample for 30 seconds and is then translated away. The burn time after 

the flame removal is recorded, as well as the burn length of the material.  Various 20 AWG 

wires that meet the requirements of the current 60-degree Bunsen Burner Test for electric wire 

were also tested in the VFP (figure 2).  One wire in particular produced a burn length of 1.93 

inches in the 60-degree Bunsen burner test, which is considered passing.  By comparison, this 

same wire had a burn length of 9.75-inches in the VFP apparatus, burning almost entirely.  

Although this result indicates the VFP is a more severe test than the current Bunsen burner 

requirement, other results indicate it to be realistic.  As shown in figure 2, many wires still have 

a very small burn length or no burn length at all.  Future work will involve the standardization of 

the major components, including the radiant heater and the ribbon burner. 

 



 
 

Figure 2. Chart of Measured Burn Lengths for Testing of Various Wires 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Full-Scale Burnthrough Testing to Investigate Equivalent Level of Safety Approaches 

 

In 2009, a new Rule governing the flame penetration resistance of thermal acoustic insulation 

became effective.  The new Rule requires that transport category airplanes manufactured after 

September 2, 2009, comply with the provisions of 14 CFR 25.856(b) when entering part 121 

service.  Section 25.856(b), in turn, requires that thermal/acoustic insulation installed in the 

lower half of the fuselage of those airplanes resist penetration of an external fire.  The 

performance criteria are contained in Appendix F, part VII of part 25.  The use of fire-resistant 

insulation is the most practical means of extending the burnthrough resistance of an aircraft 

fuselage.  Airframe manufacturers have successfully met this new requirement using 

lightweight, flame resistant barriers in combination with industry-standard fiberglass insulation 

batting.  In most cases, paper-thin ceramic barriers are installed inside existing insulation 

blankets, or the ceramic barrier is laminated directly to the moisture barrier used to 

encapsulate the fiberglass batting.  An Advisory Circular (25.856-2A) was also issued by the FAA 

in July of 2008 to address installation techniques.  Research and full-scale testing determined 

the importance of robust attachment methods at keeping the flame-resistant insulation 

barriers in place.  Another aspect of the Advisory Circular (AC) addressed the location of the 

insulation flame barriers, which are required in the lower half of the fuselage only.  As stated in 

the AC, section 7. INSTALLATION OF THERMAL/ACOUSTIC INSULATION, subsection e: 

“Section 25.856 requires that thermal/acoustic insulation installed in the lower half of the 

fuselage comply with the test requirements of part VII of Appendix F for flame penetration 

resistance.  As discussed in the preamble to Amendment 25-111, the requirement applies to 

thermal/acoustic insulation installed against the fuselage skin, or in another manner that 

provides burnthrough protection”… “The requirement does apply to insulation installed on the 

floor panels, if there was no insulation installed on the outer fuselage in the lower half.  The 

requirement does not apply to both places when insulation is installed in both places.  It is the 

intent of the regulation that the occupied areas of the airplane have greater fire protection 

through enhanced burnthrough resistance of the lower half of the fuselage, using installed 

insulation (see figure 11).” 

 

Figure 11 of the AC (figure 1) illustrates two approaches to insulating the lower half of the 

airplane.  On the left, the insulation is installed on the fuselage skin; on the right, the insulation 

is installed along the floor.  Either approach would have to comply with the requirement.  But if 

insulation was installed in both places, it would only have to comply in one place.   
 



 

 
 

Figure 1.  Different Approaches to Installing Flame-Penetration-Resistant Thermal Acoustic 

Insulation in the Lower Half of the Fuselage 

 

Although the new regulation has been in effect since 2009, industry has recently requested the 

FAA to consider addressing burnthrough protection on a system basis, rather than through a 

specific component, in this case the thermal acoustic insulation.   One example of a systems 

approach would be to utilize the flame penetration resistance of composite floor panels.  While 

the FAA agreed the floor panels (typically honeycomb or composite construction) could meet 

the new test requirements, they were concerned about the vulnerability of the crease beam 

area at the cabin floor level.  Current installation methods protect this area with blankets 

installed against the inner side of the aircraft skin.  However, removal of the blankets in this 

area may allow a direct path into the cabin via the baseboard return air vents.  In order to 

investigate this possibility, the Fire Safety Branch conducted full-scale fuel fire tests to observe 

the fire ingress into a fuselage in the crease beam area (figure 2). 

 



 
 

Figure 2.  Full-Scale Fuel Fire Burnthrough Test to Investigate Fire Ingress in the 

 Crease Beam Area 

 

Although the tests did not use thermal acoustic insulation behind the skin for simplicity, they 

illustrated the rapid ingress of fire into the passenger once the skin melts at 50 seconds (prior 

research has shown that non-burnthrough-resistant insulation blankets will only delay this 

ingress for an additional 90 seconds to 2 minutes).  In addition, the recent testing has also 

shown that a fully developed fire can progress through the tunnel area (below cabin floor, 

above cargo compartment ceiling) to the opposite side of the fuselage, once the skin/insulation 

barrier is breached.  Thermocouples were placed at the opposite side of the test fuselage to 

measure the heat/fire progression across the tunnel area and through the decompression holes 

at floor level (figure 3).  Results indicated a rapid temperature rise at 50 seconds, followed by 

another sharp increase at 90 seconds. 

 



 
 

Figure 3.  Air Temperatures in the Crease Beam Area at the Opposite Side of Test Fuselage from 

the External Fire 

 

Follow-on tests with a full array of cabin materials are planned, in order to more accurately 

assess the ingress and propagation of fire.  These tests will involve actual airframe components, 

including fitted insulation blankets, cargo compartment liner, passenger sidewall panels, 

baseboard return grills and associated hardware, carpeting, and seats.  Fractional effective dose 

calculations will be performed, to determine the calculated theoretical survivability at various 

cabin locations during each test. 

 

 

 

 

 

 

 

 

 

 

 

 



The Use of Shrouds to Minimize Air Current Influence on Test Results in the Cargo Liner Flame 

Penetration Test 

 

Beginning in 1984, The FAA implemented a number of flammability test methods aimed at 

reducing the consequences of an impact-survivable postcrash fire accident, as well as 

minimizing the inflight threat from a cargo compartment fire.  In 2005, another test requiring 

burnthrough-resistant thermal acoustic insulation was also introduced.  Several of these 

flammability tests use an oil-fired burner as the basic apparatus for producing the fire threat.  

From the beginning of the test development in the early 1980’s until shortly after the insulation 

burnthrough test became a regulation, the Park DPL-3400 burner was the burner of choice.  

Several hundred Park burners were manufactured for these applications.  However, production 

of the Park burner eventually ceased, necessitating the need for a replacement burner.  Studies 

also indicated the Park burner could be configured using a variety of internal components and 

adjustment settings, which greatly reduced reproducibility of test results. 

 

This need for a standard oil burner apparatus prompted the Fire Safety Branch to develop the 

next-generation, or “Nexgen”, burner that could be built from readily-available components.  

Rather than using an electric motor to drive the blower fan and fuel pump, the Nexgen burner 

relies on a pressurized air source and a sonic orifice to meter in the precise amount of 

combustion air, which provides more consistent flame characteristics over a range of ambient 

laboratory conditions.  Internal burner components and settings were standardized during the 

development, resulting in more precise and repeatable test conditions for each application.  

After careful evaluations, the existing flammability test methods detailed in the Aircraft 

Materials Fire Test Handbook were revised to include the Nexgen burner, allowing laboratories 

the opportunity to fabricate or purchase the appropriate burner equipment necessary to 

conduct these flammability tests with greater accuracy. 

 

Despite a thorough standardization of the burner apparatus, FAA-led intra-laboratory studies 

on the cargo liner test and the seat cushion flammability test revealed unacceptable levels of 

variation in the results.  The studies indicated good repeatability within a particular laboratory, 

however the various laboratories in the studies were not in agreement (poor reproducibility).  

This result indicated there were other factors influencing the test results, since the basic burner 

apparatus had now been standardized.  Surveys of laboratory configuration, size, and other 

environmental conditions highlighted a large variation amongst participants.  The potential 

factors were narrowed down, uncovering the movement of air in the vicinity of the test 

apparatus as the most likely cause of inter-laboratory test variation.  There were a range of 

causes, stemming from the location of test area ventilation exhaust (ceiling, wall, or floor), to 

the volumetric flowrate of air being exhausted in a particular lab.  Some laboratories had large, 

powerful ventilators in small testing areas, while others had less powerful units in very large 

testing areas.  Since it would be nearly impossible to regulate test area geometry and other 

facility features without cost-prohibitive measures, the Fire Safety Branch investigated simple 



ways of correcting the localized air currents around the burner apparatus.  One concept 

involved the partial encapsulation of the cargo liner test apparatus near the flame impingement 

area with a steel shroud designed to minimize airflow disruptions (figure 1).  The shroud 

mounted directly onto the test frame and was exposed (open) at the top of the shroud.  Sample 

test peak temperatures increased significantly, even nearing the failure temperature mark of 

400˚F, which was not unexpected.  An improved shroud design was constructed to reduce the 

increase in peak temperatures (figure 2). 

 

 

 
 

Figure 1.  Early Shroud Design Used to Minimize Airflow Disruptions 

 



 
 

Figure 2.  Improved Shroud Design 

 

The shroud sides were spaced away from the sample test frame and attached using threaded 

rod.  This design allowed for vertical air flow around the sample while minimizing horizontal 

airflow disturbances from cooling the backside thermocouple located above the horizontal test 

sample.  Although the improved shroud design was found to be effective at reducing the above-

liner air currents, which reduced temperature fluctuations and increased repeatability, the 

metallic sides heated up during the 5-minute test, resulting in increased backface 

temperatures.  The shroud sides also made it impossible to visually determine when a flame 

penetration had occurred.  Based on this feedback, an updated version of this concept was 

developed, using a more effective baffle fabricated from perforated sheet steel, which also 

permitted visibility (figure 3). 



 
 

Figure 3.  Cargo Liner Test Apparatus with Vertically-Oriented Shroud Fabricated from  

Perforated Sheet Metal 

 

Testing was conducted using the updated perforated design, which allowed for some airflow 

through sidewalls, slightly reducing entrapped or reradiated heat.  Peak temperatures dropped 

significantly, proving the effectiveness of the new design.  A comparison of tests with the 

shroud versus no shroud clearly illustrates the reduction in backface temperature fluctuations 

(figure 4). 

 



 
 

Figure 4.  Test Comparison, Shroud Versus No Shroud 

 

The next phase of the work will involve fabrication of additional shrouds for an interlab study.  

The study will determine if the results obtained by the Fire Safety Branch can be replicated by 

other laboratories using identical equipment.  A follow-up project is aimed at the development 

of a similar shroud for the seat cushion flammability test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RTCA Development of a New Flammability Test for Electronic Boxes 

 

RTCA, Inc., formerly known as Radio Technical Commission for Aeronautics, is a United States 

volunteer organization that develops technical guidance for use by government regulatory 

authorities and by industry.  It was founded in 1935, and was re-incorporated in 1991 as a 

private not-for-profit corporation.  It has over 200 committees and overall acts as an advisory 

body to the FAA to develop comprehensive, industry-vetted and endorsed standards that can 

be used as a means of compliance with FAA regulations.  Their deliberations are open to the 

public and their products are developed by aviation community volunteers functioning in a 

consensus-based, collaborative, peer-reviewed environment. 

 

One such standard, RTCA/DO-160G, Environmental Conditions and Test Procedures for Airborne 

Equipment, provides a laboratory means to determine the performance characteristics of 

airborne electronic equipment.  Chapter 26 of this standard defines test conditions and 

procedures for flammability and fire resistance.  A task group formed within the International 

Aircraft Materials Fire Test Forum (chaired and administered by the Fire Safety Branch) has 

been the primary conduit for discussion and information exchange on revising Chapter 26 of 

the standard.  The main focus of this task group is on flammability testing of electronic boxes in 

commercial aircraft, with specific emphasis on test simplification and reducing testing 

redundancy. 

 

As per the current test requirements, an electronic box must be broken down and each part 

tested individually using the different Bunsen burner test methods.  This has led to several tests 

having to be done to certify one box and confusion over how the rules apply to each part.  The 

goal of this group is to create an alternative test method where the complete electronic box 

can be tested as an assembly to simplify testing while maintaining or improving the level of 

safety.   

 

The starting point for this new test method was the telecommunications industry fire 

propagation test standard, American National Standards Institute (ANSI) T1.319.  It consists of a 

methane line burner constructed from a 0.375 inch stainless steel tube with 11 burner holes 

placed 0.5 inch away from each other (figure 1).  The burner is inserted into an electronic box 

with different fuel flow rates depending on the size of the circuit boards inside.  Comparison 

testing between the vertical Bunsen burner and the methane line burner inserted into a vented 

box using several circuit board materials was completed.  The testing indicated the line burner 

method was much more severe.     

 



 
 

Figure 1.  Methane-Fueled Line Burner 

 

Further testing was done to find the limitations of electronic boxes that do not need to be 

tested, for example when there is insufficient ventilation to sustain a flame.  To find the limit of 

airflow needed to sustain a flame, a flame with a known fuel flow rate was placed in a sealed 

box with a few small holes located on the top and bottom for ventilation.  If the flame went 

out, two additional holes were drilled and the test was repeated.  This process was repeated 

until the flame was able to sustain itself.  Two box sizes, two burner placements inside the box, 

two different hole patterns, and several different fuel flow rates were tested in order to 

determine the minimum airflow needed to sustain a flame.  Figure 2 shows the minimum 

airflow required to sustain a flame inside 2 different box sizes. 

 



 
 

Figure 2.  Minimum Airflow to Sustain a Flame Inside Two Different Box Sizes 

 

In an effort to further refine the test method, additional tests were completed using 

production-spec aircraft electronic boxes and other non-production vented boxes with flame 

resistant and non-flame resistant materials placed inside.  It was found that certain capacitors 

can explode when placed in a fire, so the line burner must be placed near capacitors if they are 

included as part of an electronic box, in order to test the worst possible case.  Another 

important point of emphasis of the testing was the development of a simple pass-fail criteria 

for a box.  The current acceptance criteria proposes that no flame of any size be permitted to 

escape the box for more than 12 seconds.  The 12-second time limit is based on the 12-second 

vertical Bunsen burner flame exposure time, since the goal is to prevent flames from spreading 

to any other material placed around the box in an aircraft.  Further intra-laboratory testing is 

planned with production-spec boxes at 4 different laboratories using the line burner test 

method. 
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Additive Manufacturing and Vertical Bunsen Burner Testing of 3D Printed Material 

 

Additive Manufacturing (AM) is the term used to describe the technologies that build three 

dimensional (3D) objects by adding layer-upon-layer of material, whether the material is plastic, 

metal, or concrete.  AM uses computer-aided-design (CAD) data software or 3D object scanners 

to direct hardware to deposit material in successive layers in precise geometric shapes.  As its 

name implies, AM adds material to create an object.  This is a transformative approach to 

industrial production that enables the creation of lighter, stronger parts and systems.  By 

contrast, when creating an object using traditional methods, it is often necessary to remove 

excess material through milling, machining, carving, shaping or other means.  The concept of 

creating lighter, stronger parts and reducing machining processes has attracted the attention of 

airframe manufacturers, who continuously strive to build lighter, more fuel efficient aircraft.  

Through discussions in the Aircraft Materials Fire Test Forum, airframe manufacturers and their 

supply chain companies have expressed interest in installing 3D printed parts in aircraft 

interiors.  All AM-manufactured parts and components used in the cabin interior would still 

need to meet the appropriate flammability requirements, including the vertical Bunsen burner 

and Heat Release test where applicable.  Although the raw materials used in the AM process 

may have known, robust flammability properties, it is possible the innovative process could 

impact the flammability of the finished component.  AM introduces new variables during the 

construction, including the printing direction, raster angle, layer thickness, printing width, and 

infill percentage.  It’s possible to adjust any of these parameters even when producing parts 

with identical external dimensions.   

In order to gain a better understanding of the impact of various manufacturing parameters on 

flammability, the Fire Safety Branch recently purchased the Fortus 450mc additive 

manufacturing machine made by Stratasys (figure 1).  The apparatus has the ability to build 

production-quality parts up to a size of 16 by 14 by 16 inches using 13 different thermoplastics, 

including a few high-performance materials for specialized aerospace applications.  This 

capability allows engineers to quickly produce samples for fire testing while easily varying the 

build parameters mentioned above.  It also provides the capability of building complex parts for 

other purposes that may be difficult to produce using more traditional methods.  In summary, 

the primary goal of procuring the AM apparatus and conducting research is to quantify the 

impact that these variables have on flammability, and possibly find a worst-case scenario that 

can be used to simplify future testing. 

 



 

Figure 1. Stratasys Fortus 450mc at the FAA Technical Center 

 

The first variable tested was printing direction using four different materials – Ultem 9085, PC-

ABS, Polycarbonate, and Nylon-12.  Ultem 9085 showed very minor differences in after flame 

time when printed in the YZ-direction compared to the XY and ZX directions, but overall showed 

very little burning.  This material may be too flame resistant to show any differences in printing 

parameters.  PC-ABS and Polycarbonate were both too flammable to show any differences as 

most samples burned up completely.  Nylon-12 showed a relatively large difference in drip 

flame time between the YZ-direction and the ZX-direction, but more testing is necessary as only 

five samples were tested in each direction (figure 2).  Future plans include testing Nylon-12 in 

the XY-direction and testing more samples for all directions to generate a more robust data set.  

The next printing variable to be tested will be infill percentage using Ultem 9085, since it may 

show more burning with the increased surface area that a lower infill percentage will bring. 



 

 

 

 
 

Figure 2.  Nylon-12 Vertical Bunsen Burner Test Results in the YZ and ZX Direction 
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