FAA 6th Triennial Cabin and Fire Safety Conference

FAA Overview on Testing of Magnesium Alloys for Use in an Aircraft Cabin

Presented to: Triennial Conference, Atlantic City By: Tim Marker, FAA Technical Center Date: October 27, 2010

Federal Aviation Administration

Key Activities

FAA Policy Statement

Use of Magnesium in Airplane Cabins—Updated 10/07

The FAA has had several recent inquiries regarding the use of magnesium in airplane cabins. Specifically, magnesium alloys have been suggested as substitute for aluminum alloys in seat structure, as well as other applications, due to the potential for weight savings.

The FAA's central concern regarding the use of magnesium in the cabin is flammability. The current regulations do not address the potential for a flammable metal to be used in large quantities in the cabin. Therefore, if such a material were introduced to the cabin, the FAA would have to be convinced that the level of safety was not reduced. Special conditions may be required to establish appropriate criteria. Different magnesium alloys have different susceptibility to ignition, however, magnesium remains a material that, once ignited, is very challenging to cope with using fire extinguishers currently available on aircraft.

The use of magnesium is currently the subject of a task group of the International Aircraft Materials Fire Test Working Group. Depending on the outcome of the task group's work, the FAA may support additional research in this area, to the extent industry can supply materials. This would likely include full-scale testing should the initial assessments suggest there is some potential for acceptable installations. Both the post crash, as well as in-flight, fire scenarios need to be addressed.

Key Activities

International Aircraft Materials Fire Test Working Group

Meets three times per year...

- One meeting held in Atlantic City, New Jersey
- One meeting held at host organization in North America
- One meeting held at host organization outside the US

Issues and concerns in the area of aircraft materials fire safety testing are discussed with emphasis on the current test methods.

The WG is open to anyone in the international community, including industry, government, and academia with an interest in aircraft materials fire safety and testing

Key Activities

SAE Aircraft Seat Committee

SAE International Aerospace Standard – AS8049 rev A "Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft and General Aviation"

SAE Aircraft Seat Committee: Custodian of Standard AS8049

Para 3.3.3 states, "Magnesium alloys shall not be used."

FAA – TSO-C127, Rotorcraft and Transport Airplane Seating Systems References AS8049

Key Activities

Initial Laboratory-Scale Testing

FAA Overview on Testing of Magnesium Alloys October 27, 2010

Full-Scale Testing

Method: Conduct baseline tests using OEM aluminum-framed triple seats. Tests will simulate a post-crash fire with fuselage rupture, allowing external fire to directly impact the cabin materials.

Then...

Conduct additional tests in an <u>identical fashion</u> using mag-alloy in the construction of the primary seat components. External fire permitted to burn for 5 minutes, then internal fire permitted to burn for 5 additional minutes before applying water.

Outcome: Determine if the use of mag-alloy poses additional hazard during the 10-minute event

Primary Seat Components

Full-Scale Testing

Full-Scale Test Apparatus

OEM Coach Style Seats w/Modified Back Frame

FAA Overview on Testing of Magnesium Alloys October 27, 2010

Federal Aviation Administration

Baseline Test Configuration

Application of Water Post-Test

water applied at end of all tests (not just magnesium), for similarity

- Smoke Meter

Baseline Test Result

Baseline Test Result

Baseline Test Result

FAA Overview on Testing of Magnesium Alloys October 27, 2010

Baseline Test Summary

Pan fire extinguished at 5 minutes using AFFF

Interior fire extinguished at 10 minutes using water

Incapacitation reached in 4 min 10 sec at forward location

Seat backs (cushions, covers, plastics) mostly consumed on port side; largely intact on starboard side

Seat bottom cushions on port side heavily involved in fire

Increased melting of primary seat structure compared to previous baseline tests

Mag-Alloy Full-Scale Testing

- •WE-43 (good-performing material)
- •AZ-31 (poor-performing material)
- •WE-43 in primary + back frame + baggage bar
- •WE-43 in primary + back frame + baggage bar (repeat)

WE-43 Test Configuration

FAA Overview on Testing of Magnesium Alloys October 27, 2010

WE-43 Test Configuration

WE-43 Test Results

WE-43 Test Result

Summary of Findings

- Pan fire extinguished at 5 minutes using AFFF
- Interior fire extinguished at 10 minutes using water
- Incapacitation reached in 4 min 38 sec at forward location
- Seat backs (cushions, covers, plastics) mostly consumed on port side; largely intact on starboard side
- Seat bottom cushions on port side heavily involved in fire
- Increased melting of primary seat structure compared to baseline 3 test

AZ-31 Test Configuration

FAA Overview on Testing of Magnesium Alloys October 27, 2010

AZ-31 Test Results

AZ-31 Test Result

Summary of Findings

- Pan fire extinguished at 5 minutes using AFFF
- Interior fire extinguished at 10 minutes using water
- Incapacitation reached in 4 min 33 sec at forward location
- Seat backs (cushions, covers, plastics) mostly consumed on port side; largely intact on starboard side
- Seat bottom cushions on port side heavily involved in fire
- Increased melting of primary seat structure compared to baseline 3 test

Test Comparison Temperature 4' to 5' in Forward Cabin

Cabin Survivability Comparison

WE-43 All-Mag Test

WE-43 All-Mag Test

WE-43 All-Mag Test

All-Mag Repeat Test

All-Mag Repeat Test

FAA Overview on Testing of Magnesium Alloys October 27, 2010

All-Mag Repeat Test

FAA Overview on Testing of Magnesium Alloys October 27, 2010

Summary of Full-Scale Testing

For baseline and mag-alloy tests, pan fire extinguished at 5 min, water applied at 10

Slight flashing of burning mag-alloy during water application for WE-43 test

Noticeable difficulty extinguishing burning mag-alloy during AZ-31 test

Incapacitation results very similar for baseline and mag-alloy tests

- •slightly better for mag-alloys at forward location
- •slightly worse for mag-alloys at mid location
- More severe fire condition caused more rapid incapacitation during "all-mag" tests

Future Considerations

All full-scale test results would help define an appropriate lab-scale test method or methods, which is the primary goal of the research.

Although post crash full-scale test results will help in determining the safe application of magnesium in seat frames, other scenarios and testing will also be used.

<u>If</u> magnesium alloys are determined safe for use in seat frames, a representative lab test/tests will be developed.

Development of a Lab-Scale Test

Development of a Lab-Scale Test

Items to Consider...

Thermal Insult

•Duration

•Size

Intensity

Test Sample

•Size

•Geometry

Orientation

Test Parameters

- •Melting Time
- •After Flame Time
- •Weight Loss?

Possible Lab-Scale Test Structure

