

Novel Use of Cyanate Esters in Aerospace Applications

(Paper presented International AC Fire & Cabin Safety Conf. October 29-Nov 2, 2007)

Sajal Das

Lonza Inc.

90 Boroline Rd

Allendale, NJ 07401

sajal.das@lonza.com

Alessandro Falchetto

Lonza AG

Wallise & Werke

CH-3930

Visp, Switzerland

alessandro.falchetto@lonza.com

Richard Lyon

FAA Fire Safety Branch Atlantic City Int'l Airport Atlantic City, NJ 08405

What are Cyanate Esters?

- Cyanate esters belong to a class of thermoset resins available in di and multifunctional forms.
 Depending on chemical structure, cyanate esters can be:
 - Solid
 - Liquid
 - Semisolid
- The versatility of physical form gives wide formulation flexibility (similar to epoxy resin) to formulators and crosslink structure makes it inherently flame retardant (similar to phenolic)

What are the Advantages of Cyanate Esters?

- Addition cure—no volatility during curing
- Gives high crosslink structure with T_g over 400°C (720°F) depending on chemical structure
- Excellent solvent and radiation resistance
- Very low di-electric constant (D_K) and low-loss (D_f) at high frequency
- Excellent solubility to common organic solvents (suitable for solvent prepregs)
- Low stable viscosity—suitable for hot/melt prepregs
 - RTM/VARTM
 - Filament winding
 - Pultrusion
 - Other liquid casting similar to polyurethane
- Depending on chemical structure, some cyanate esters are inherently flame retardant with excellent FST properties suitable for aircraft and other transportation industries

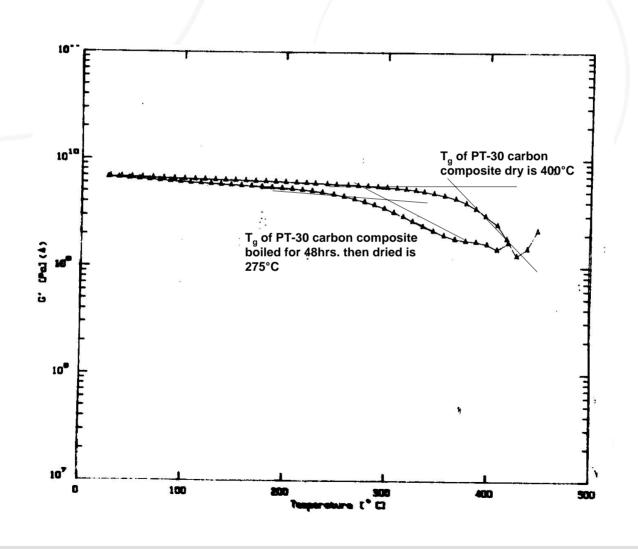
What are the Known Drawbacks?

Past

≅ Relatively high cost

- High temperature cure cycle
- Stability of materials at processing temperature
- Lack of formulation knowledge (toughness, moisture problem, etc.)
- Lack of material availability and commitment from chemical companies

Today



Today

- High performance Printed Circuit Board (PCB)
- Radomes, low loss at very high frequency (>40-60 GHz) (F-35, F-18, F-22 and other classified programs)
- Satellites
- Air duct in Airbus 340/380
- Formula One racing car and muffler system for motorbike
- Some critical electrical components close to engines (exposed 450°F) in Boeing 737/777
- Laser guided missile hardware

Mechanical properties of PT and PMR-15 carbon-fiber composites (fiber 58-64 vol.-%) of Modern Plastics, Feb, 1999

Properties	PT-r	esin	PMR-15		
	24°C	330°C	24°C	315°C	
0°C Flexural Strength, 10 ³ p.s.i.	250-360 ^b	150-200 ^b	220-280 ^c	a 140 ^c	
0°C Flexural Modulus, 10 ⁶ p.s.i.	15-17 ^c	16 ^c	15-17 ^c	15 ^c	
Short-beam-shear strength, 10 ³ psi	21-24 ^d	21-22 ^d	-	-	
	10 ^e	7.2 ^e	15 ^f	7.2 ^f	

A: PMR-15 (Dexter Composites) is a polyimide produced by the polymerization of methylene dianiline (MDA).

B: Range of data for composites made with Celion (BASF) 6000, T300, and T650 carbon fibers.

C: Celion 6000 fiber.

D: Celion T650/42 fibers. E: Polyimide-sized fibers. F: Unsized fibers.

Lonza

Focus: Weight Reductions / Good Surface Finish / Environmentally Problematic Chemicals

- Phenolic resin (Resole or novolac based) are the primary resin for aircraft interior structures
- Brominated epoxy are used in ducting (mainly USA) and also in aircraft flooring
- Some phosphorous additives are used as flame retardants
- More than 7000-8000MT prepregs are used in only in Aircraft Interiors

$$\begin{array}{c} \text{OH} \\ \text{OH} \\$$

Novolac OH
$$H_2^{\text{CH}} \rightarrow H_2^{\text{CH}} \rightarrow H_2$$

Issues with Current Chemistry

- Free phenol and formaldehyde even with excessive Bstaging
- Excessive B-staging results low tack in the prepreg and artificial tack is introduced by alcohol
- During curing, volatiles generate from condensation polymerization and from tackifier solvent
- Surface becomes poor for interior applications
- Extra coating polishing required to smooth the surface

Issues with Current Chemistry

- Adds extra weight and additional labor lost
 - Not the best time to add additional weight when fuel cost is skyrocketing
- Airflow Duct with phenol-formaldehyde resin?
- Kevlar duct keeps weight reduction but PF resin required in additional coating (weight!)
- Brominated epoxy or brominated FR cause heavy smoke [Fixing wrong building block, adds weight and cost]

Lonza **Entry of New Chemistry in Aircraft Interiors** Cyanate Esters

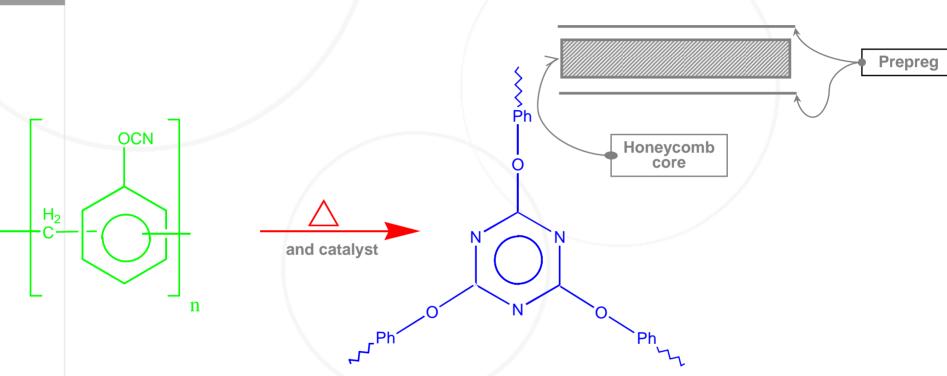
Primaset® PT Resin

- First present at the FAA Conference in 1993
- Major advancements have taken place since then:
 - Lonza built a large dedicated cyanate ester plant in 1999
 - More than 60% of ducting made for A340/380 today is made from a modified PT resin
 - Prepreg available from Gurit

Primaset® PT Resin

- New building block development focusing on environmentally friendly and other regulatory (ROSH, REACH) and FAA material requirements
- Cost effective process to manufacture parts
 - Vacuum bagging
 - RTM
 - VRTM
 - Resin Infusion
 - less additives to pass OSH and FST
 - alternative to thermoplastic (TP)

Structures of Recommended Cyanate Esters for Aircraft Interiors



$$H_2$$
 H_2
 C
 C
 C
 C
 C
 C
 C
 C
 C

Primaset™ PT-15, PT-30, PT-60 (BASE RESIN)

PrimasetTM LECY (Modifier/tackifier reactive diluent)

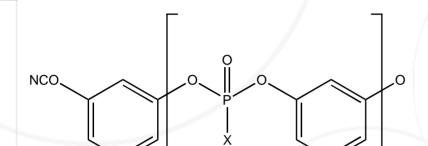
- Possible to cure 125-135°C prepreg bonding with honeycomb core or crushed core (150°C) technology
- No volatile during cure and gives excellent surface finish

Mechanical properties commercial prepreg

Table 1:Mechanical Properties of Stesapreg EP127-C510-40						
Properties	Unit	Value				
Ultimate Tensile Strength 1)						
23°C	MPa	840				
135°C		800				
Tensile Modulus 1)						
23°C	GPa	65				
135°C		63				
Ultimate Compression Strength 1)						
23°C	MD-	800				
135°C	MPa	630				
135°C HW ²⁾		530				
Ultimate Flexural Strength 1)						
23°C	N 4 D	1100				
135°C	MPa	1050				
135°C HW ²⁾		800				
Flexural Modulus 1)						
23°C	C.D.	64				
135°C	GPa	61				
135°C HW ²)		61				
IIS short beam						
23°C	MPa	65				
135°C		50				
Climbing Drum Peel Strength 3)						
23°C	Nmm/mm	45				
1) normalized to 62 Vol. % of fibre						
2) HW= Hot-Wet: boiling water until	saturation					
3) 2 plies of Prepreg material with 50						
Core material: Nomex honeycomb	, cell size 3.2 n	nm ; 48kg/m³				

Flammability properties of commercial prepreg

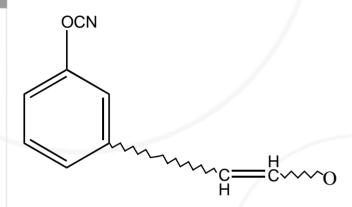
Table 2: Flammability of Stesapreg EP127-C510-40 in solid laminate consisting of 5 plies					
	Properties	Unit	Value		
Flame Test ve	rt. 60 sec. FAR 25.853				
S	Self-Extinguishing Time	sec.	0		
E	Burn Length	mm	4		
Ι	Drip Extinguishing Time	sec	0		
NBS Smoke C	hamber				
F	laming mode	D_s	50		
Heat Release	FAR 25.853	— 3			
	Peak	kW/m^2	50		
	2 min	kW/min/m ²	20		


with 2 face	imability of Stesap 2 sheets on sandwi	ch structure	l)
Proj	perties	Unit	Value
Flame Test vert. 6	0 sec. FAR 25.853		
Self-l	Extinguishing Time	sec.	2
Burn	Length	mm	4
Drip	Extinguishing Time	sec	0
NBS Smoke Cham	iber		
Flam	ing mode	D^c	30
Heat Release	FAR 25.853	,	
	Peak	kW/m ²	40
	2 min	kW/min/m ²	30
 Core material: Non thickness 	ex honeycomb with celess 5 mm	l size 3.2 mm; 29	kg/m³;

New Development: Targeted to aircraft interiors and other transportation industries

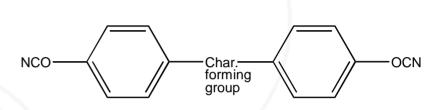
Primary Goal:

- Building block chemistry to enhance ultra low OSU and FST properties without free phenol amines and formaldehyde chemicals
- Auxiliary products compatible with CE, epoxy to provide tack, low temperature cure and toughness is bonded with honeycomb core

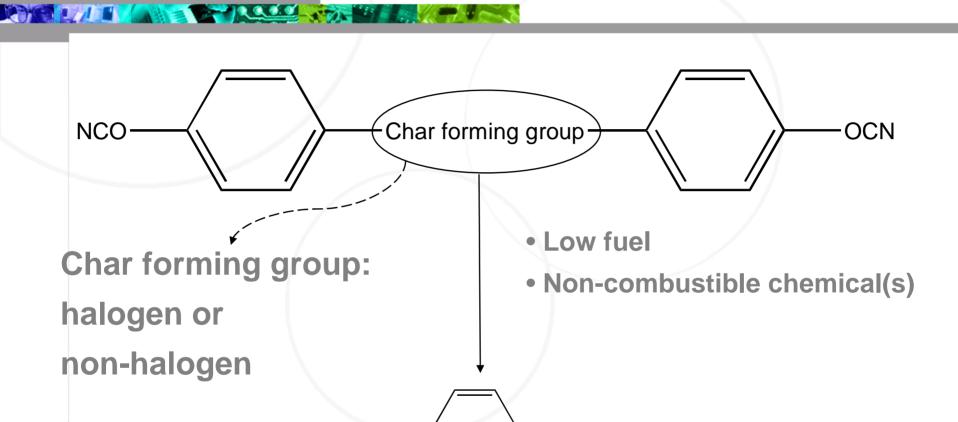

Primaset/FR-500

n

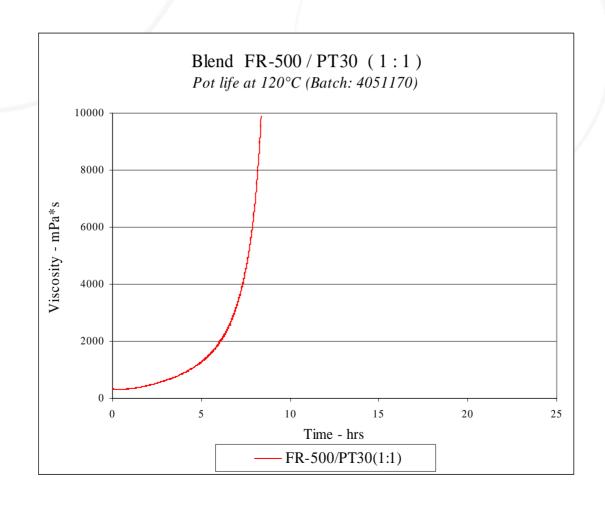
BPC-CE

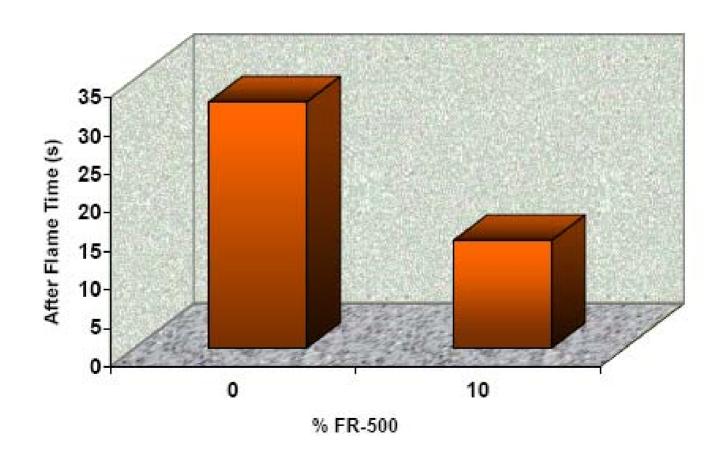

- semi-solid
- soluble in MEK, Acetone
- Additive for CE, epoxy, and other polymers
- sample available

- developed by FAA/Huntsman
- Ultra low OSU
- halogen derivative
- crystalline solid
- raw material issue?


Primaset TC-65

- Long chain low viscosity (<80 CPs) liquid for improved toughness and tackiness
- Compatible with CE, Epoxy
- Low temperature, thermal or free radical cure




Primaset LHR-10

- Low OSU
- No halogen
- Low temperature cure, organic catalyst for CE

graphite type structure

FR 500 / PT 15 blends

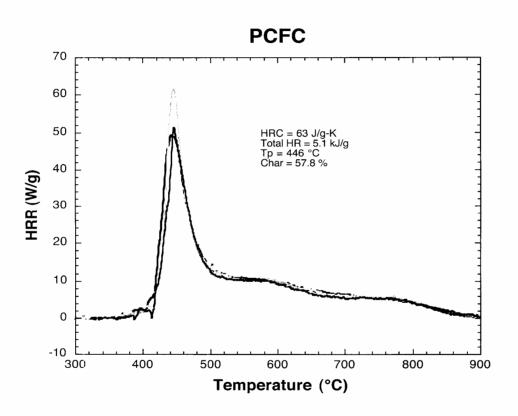
1. Sample preparation (polymerisation at standard conditions).

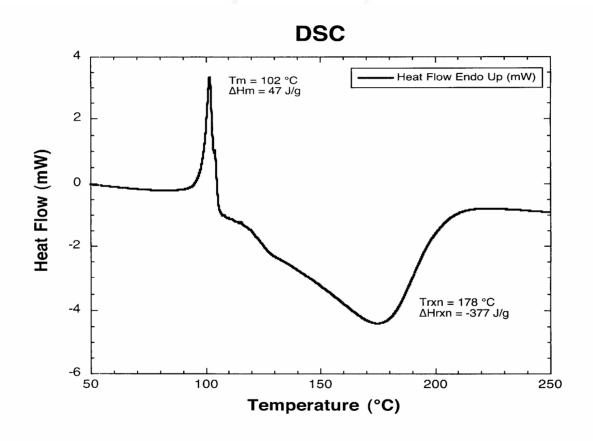
Exper	PT 15 / FR 500 ratio		Polymerisation			on		
	PT 15	FR 500	G	el	C	ure	Post	t-cure
			T.	Time	T.	Time	T.	Time
#	%	%	°C	min	°C	min	°C	min
4640-120- 1	100		150	60	200	180	260	60
4640-120- 2	90	10	150	60	200	180	260	60
4640-120- 3	80	20	150	60	200	180	260	60
4640-120- 4	70	30	150	60	200	180	260	60
4640-120- 5	60	40	150	60	200	180	260	60

2. Flame test

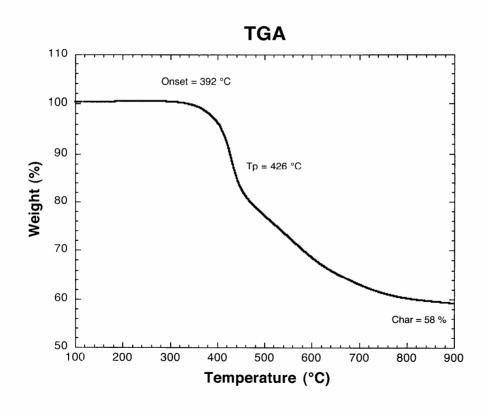
Experiment		time(everage)	Drops	Sample after measurement
#	1 st	Time total (5 specimen)		
4640-121-1	> 100	400	No	
4640-121- 2	2-4	8	No	
4640-121- 3	0	7-8	No	

4640-121- 4	0	0	No	
4640-121- 5	0	0	No	


Heat Release Capacity, Total Heat Release, and Char Yield of New Developmental Products


Product	Heat Release Capacity (J/g-K)	Total Heat Release (KJ/g)	Char Yield (%)	OSU (single glass ply)
BPC-CE	24	4.2	53	14/13*
LHR-10	89	7.1	49	56/17*
LHR-10 (m)	54	5.1	58	40/10*
PT-30	122	9.9	52	
Ultem™	121	11.0	49	< 65/65**
PEEK	155	12.4	44	≤ 65/65**
Phenolic	50-80	12	44	35/23*
HDPE	1486 ± 20	43.5 ± .1	0	Fail**
PC	359	16.3	21.7	Fail**
FR-500				

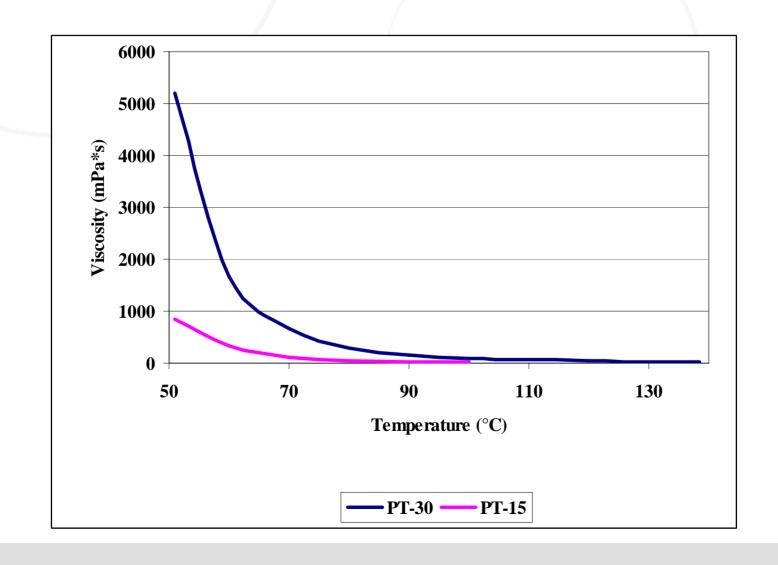
^{*}Single ply/glass fabric;


^{** 1/16-}inch sheet

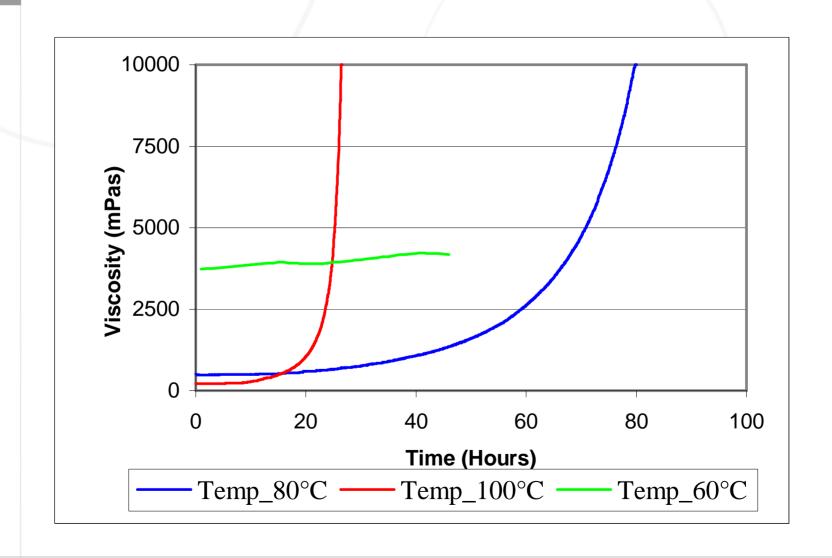
	Microscale Combustion Calorimeter					
Test	HR Cap	Peak HRR	Total HR	Тр	Char	
	(J/g-K)	(W/g)	(kJ/g)	(°C)	(%)	
1	59	49	5.2	444	58.5	
2	75	62	5.3	446	57.6	
3	56	51	4.8	447	57.2	
Average	63	54	5.1	446	57.8	

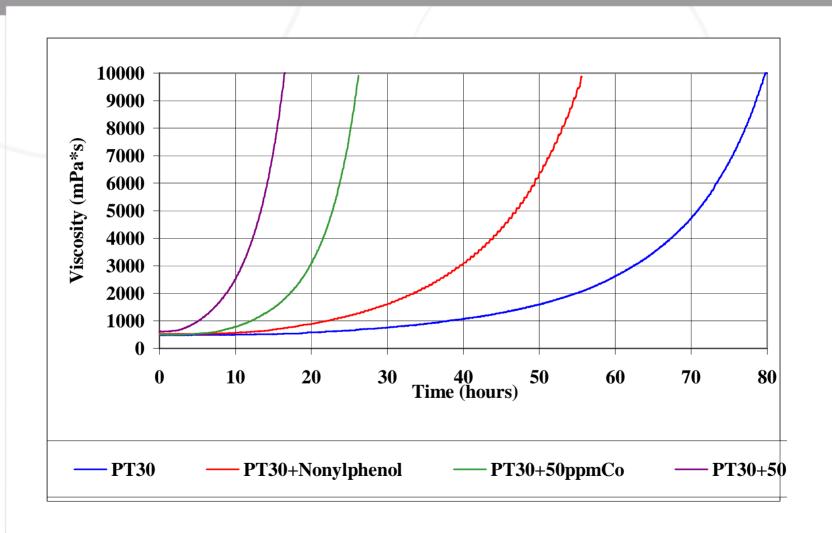
Differential Scanning Calorimetry					
Peak Melting Temperature 102°C					
Heat of Melting	47 J/g				
Peak Reaction Temperature	178°C				
Heat of Reaction	-377 J/g				

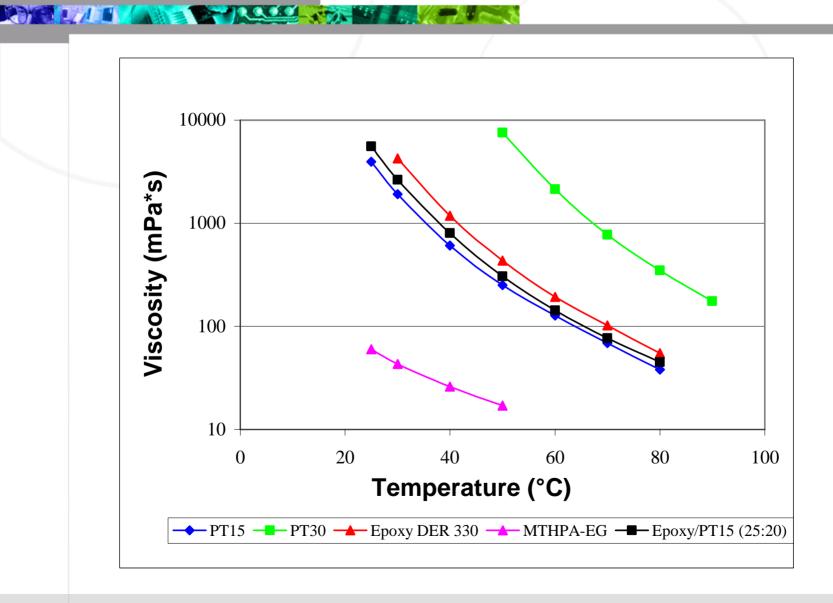
Thermogravimetric Analysis				
Mass Loss Onset Temperature	392°C			
Peak Mass Loss Rate Temperature	426°C			
Char Yield	58 %			

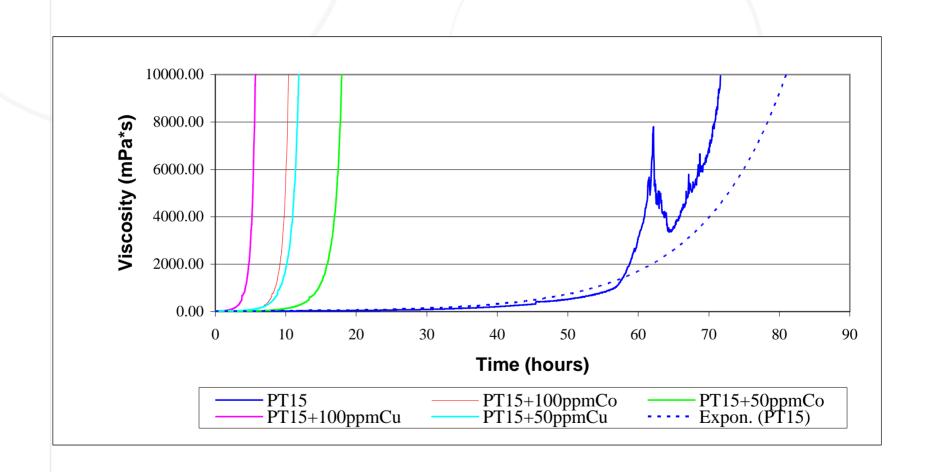

New Process

Hot melt prepreg


- FTM
- VRTM
- alternative to TP process (expensive tooling)


The Influence of Temperature on PT-30 Shelf-life.


Catalyst effect on Shelf-life of PT-30 at 80°C



Effect of Epoxy on Viscosity of PT-15 with respect to Temp

- Phenolic-Triazine (PT Resin) now proven material for aircraft interior applications
- With new char forming building block with and without halogen provides very low heat release and easily passes 65/65 requirements of FAA OSU numbers
- Non-volatile addition polymerization without free phenol formaldehyde and aniline chemistry would be ideal material for mass scale use of aircraft and other transportation industries

- Weight reduction (no additional coating/ polishing/ painting) would be prompt alternative to phenolic chemistry
- Cost effective manufacturing process such as RTM, vacuum bagging, VRTM, FW and other alternatives to TP process
- Fire resistant spray coating to mold or prepreg

