Fire Extinguishing Agents Tested Using the Aircraft Cargo Compartment MPS Standard

Presented to: The Fifth Triennial International Fire &

Cabin Safety Research Conference

By: John Reinhardt, Project Manager

FAA Fire Safety Team, AJP-6320

Date: October 30 – November 1, 2007

Outline

- Background
- MPS Fire Test Methods
- Fire Extinguishing Agents Tested
- Fire Test Results
- Final Words

Background

BACKGROUND

- FAA requires fire protection systems for Class C aircraft cargo compartments (FAR 25.851 857)
- Aircraft industry selected Halon 1301 systems to comply with the FARs
- Halon 1301 is an ozone depleting agent
- Montreal Protocol banned production of Halon
 1301 in 1994
- FAA established the IHRWG in 1993
- IHRWG commissioned work to develop MPS tests

Background

BACKGROUND (CONT.)

- In 2000, the FAA published the aircraft cargo compartment MPS for gaseous extinguishing agents
- In 2003, the aircraft cargo compartment MPS was re-published to include non-gaseous extinguishing agents
- In 2005, the 2nd version of the MPS was republished (Below inert condition)

Outline

- Background
- MPS Fire Test Methods
- Fire Extinguishing Agents Tested
- Fire Test Results
- Final Words

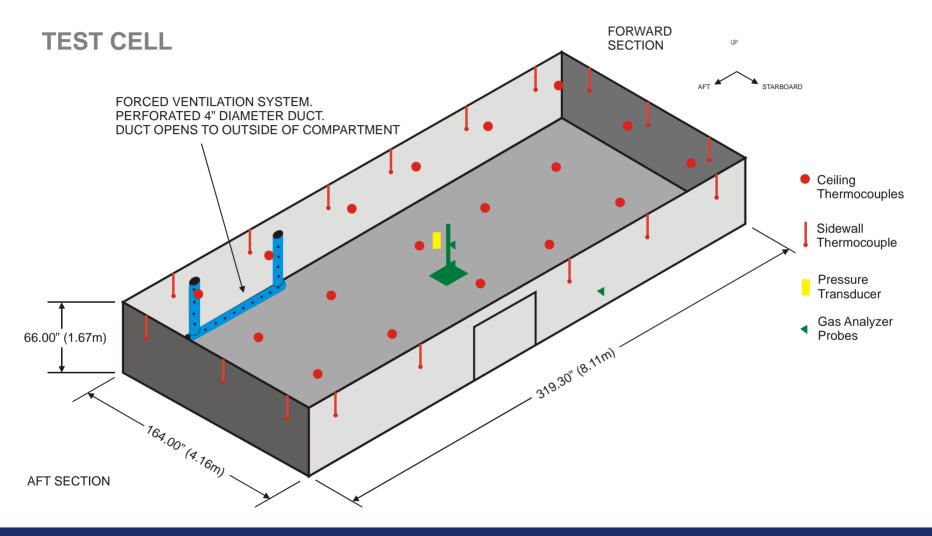
Federal Aviation

Bulk Load Fires

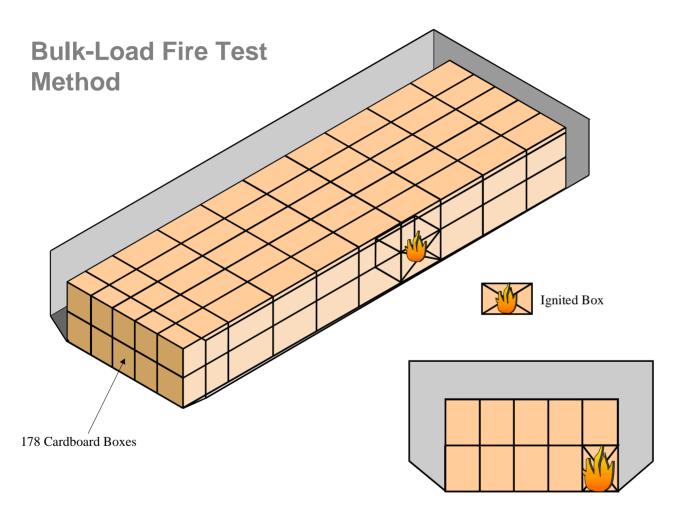
Flammable Liquid Fires

Containerized Fires

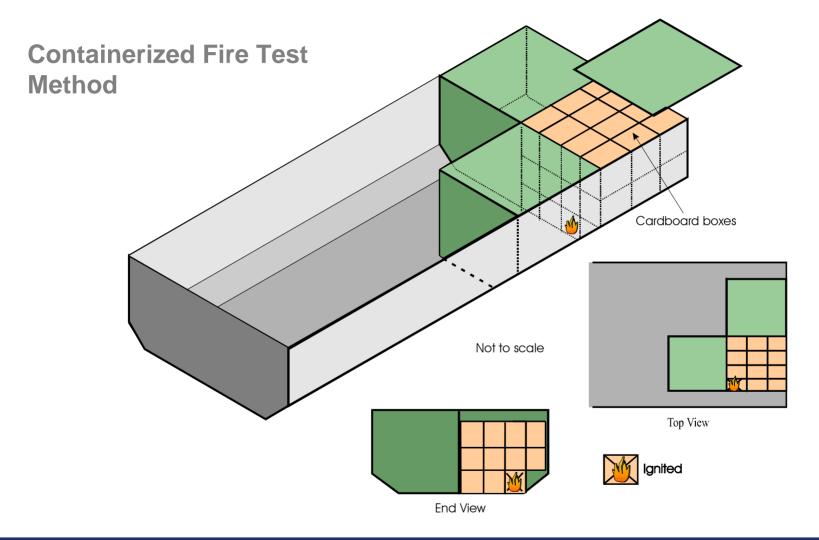
Aerosol Can Explosion Simulation


TEST CELL

- The fire tests are to be conducted inside a simulated below floor cargo compartment of a wide-body aircraft
- Cargo Compartment Volume = 2000 ft³
- Compartment Leak Rate = 50 CFM
- Instrumented with thermocouples, gas analyzers, and pressure transducers

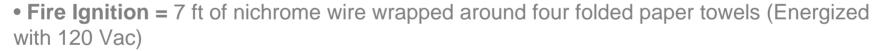


Federal Aviation


Bulk-Load Fire Test Method

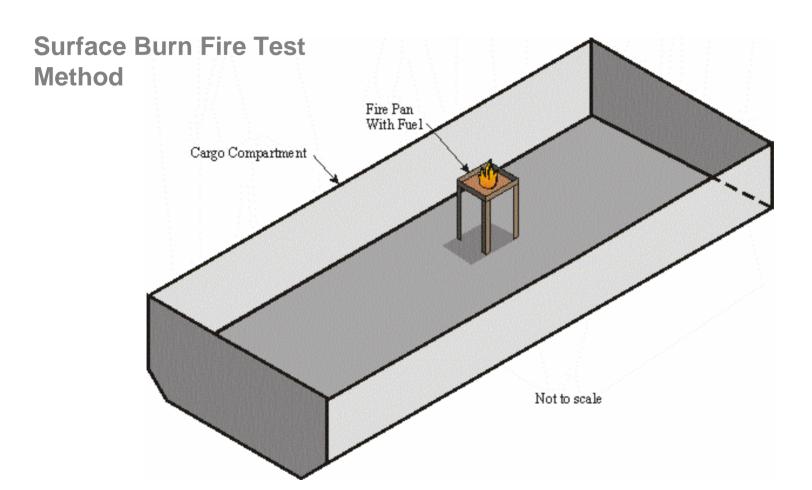
- **Fire Load** = 178 card board boxes (30% of Vol.) containing 2.5 lbs of shredded office paper (strips, not confetti) at standard room temp.
- Boxes nominal dimensions: 18'x18"x18"
- **Fire Ignition** = 7 ft of nichrome wire wrapped around four folded paper towels (Energized with 120 Vac) inside box (with 1" holes).
- Fire Suppression System Activation = 1 minute after one of the ceiling T/C reaches 200 °F
- **Test Duration** = Four tests @ 30 minutes each; fifth test shall for at least 180 minutes. Hybrid systems shall run for 180 min.

Federal Aviation



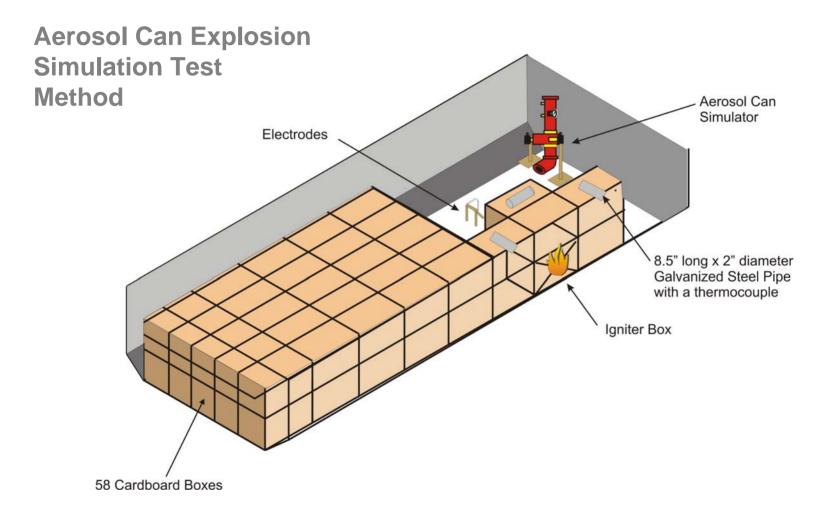
Containerized Fire Test Method

- Fire Load = 33 card board boxes inside an LD3.
 3 LD3 in Compartment
- **Two ventilation slots** in main LD3 container size 12" x 3" +/-1/4 (access panel, and lower right panel)
- The LD3 access panel is made out of 0.08" polycarbonate sheet



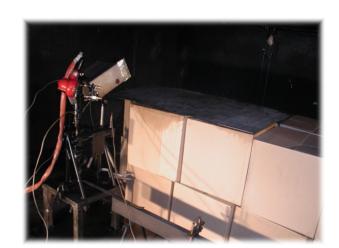
- FSS Activation = 1 min. after one of the ceiling T/C reaches 200 °F
- **Test Duration** = Four tests @ 30 minutes each; fifth test shall for at least 180 minutes. Hybrid systems shall run for 180 min.

Federal Aviation


Surface Burn Fire Test Method

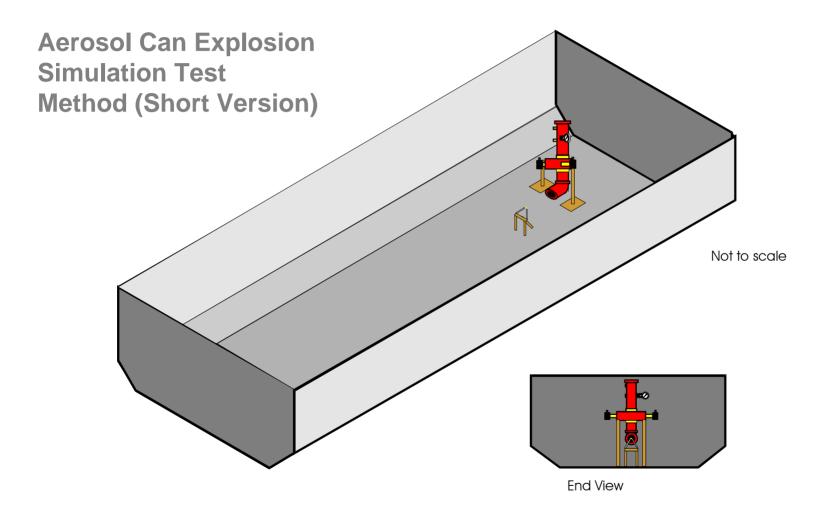
- Fire Load = 0.5 U.S. Gallon of Jet A fuel inside a 2 ft x 2 ft x 0.33 ft pan
- Add 13 oz of gasoline to make ignition easier; add 2.5 gallons of water to reduce pan warping.
- Place pan in most difficult location (1 ft)
- Fire Ignition = Arc created by two electrodes
- FSS Activation = 1 min. after one of the ceiling T/C reaches 200 °F
- **Test Duration** = 5 minutes after agent discharge

Federal Aviation



Aerosol Can Explosion Simulation Test Method

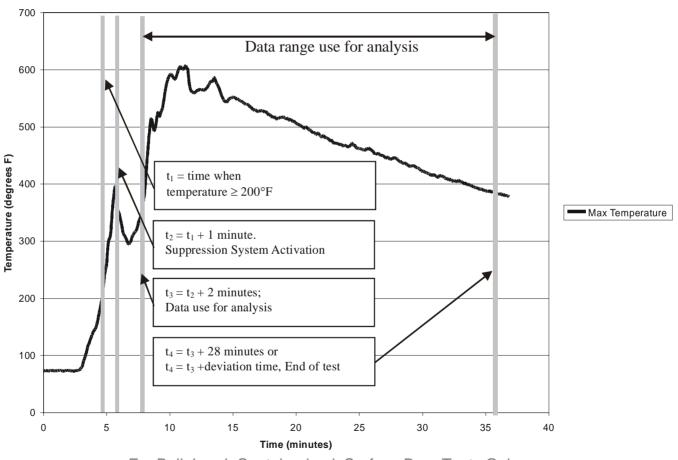
Fire Load:


<u>Simulator</u> - 0.2 lb. Propane, 0.6 lb. of denatured alcohol, 0.2 lb of water <u>Cargo Bay</u> - 59 cardboard boxes

- **Ignition Sources** = Nichrome wire/paper towel and electrodes (away from sim).
- FSS Activation = 1 min. after one of the ceiling T/C reaches 200 °F

- Heat up simulator to increase pressure in content chamber to 210 psig
- Aerosol Can Simulator Activation = 5 minutes after one of the TCs, attached to the pipes, reaches 400 degF.
- **Test Duration** = shall be conducted for at least 180 minutes or until the simulator is activated.

Aerosol Can Explosion Simulation Test Method (Short Version)


- **Fire Load =** 0.2 lb. Propane, 0.6 lb. of Denatured Alcohol, 0.2 lb of water
- **Ignition** = Arc created by two electrodes (230 W) that are 2 ft from the floor and 3 ft away from the simulator
- **Test Initiation** = Discharge agent and allow 2 minutes for dispersion
- **Simulator Activation** = When the agent, at 2 feet from the floor, is at the minimum protection concentration (must be measured)
- **Test Duration** = After the simulator is activated and data saved.

Federal Aviation

Acceptance Criteria

For Bulk Load, Containerized, Surface Burn Tests Only

Acceptance Criteria

FIRE SCENARIO	MAXIMUM TEMPERATURE °F (°C)	MAXIMUM TIME-TEMPERATURE AREA °F -MIN (°C-MIN)	PRESSURE PSIG (KPa)	
Bulk Load	720 (382)	9940 (5504)	N/A	Use the data that is between 2 minutes and 28 minutes after suppression system activation. See figure.
Containerized Load	650 (343)	14040 (7782)	N/A	Use the data that is between 2 minutes and 28 minutes after suppression system activation. See figure.
Surface Burn	570 (299)	1230 (665)	. 47.7	Use the data that is between 3 minutes and 5 minutes after reaching 200 degF.
Aerosol Explosion	N/A	N/A		There shall be no evidence of an explosion. No enhancement of explosion at below inert.

Outline

- Background
- MPS Fire Test Methods
- Fire Extinguishing Agents Tested
- Fire Test Results
- Final Words

Federal Aviation

Fire Extinguishing Agents Tested

Compound	Atmospheric Lifetime (yrs)	ODP	GWP ₁₀₀
2-BTP (CH ₂ CBrCF ₃)	0.008	0	Not Available
FK-5-1-12 (CF ₃ CF ₂ C(O)CF(CF ₃) ₂)	0.014		1
FM-200 (CF ₃ CHFCF ₃)	36.5	0	3,800
Halon 1301 (CF ₃ Br), Baseline	65	12	6,900
HFC-125 (CF ₃ CF ₂ H)	29	0	3,400
Water Mist/N2	Not Applicable	0	Not Applicable

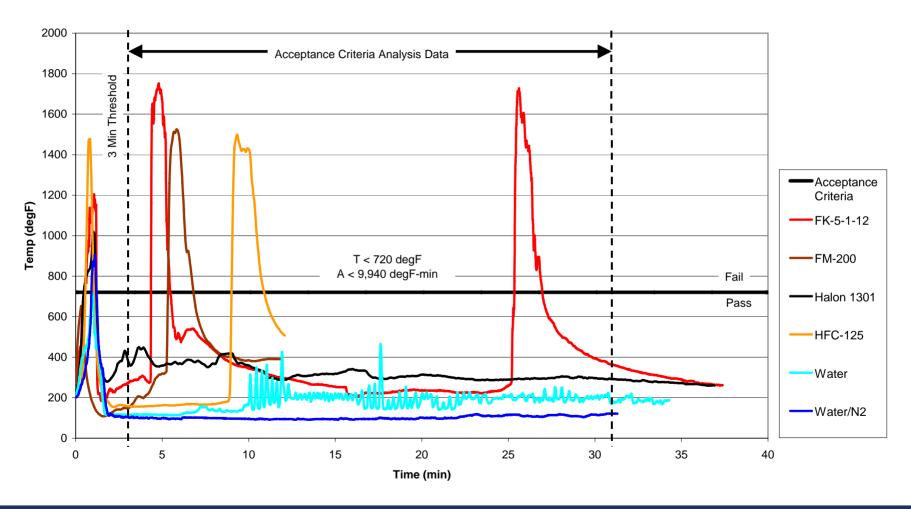
Fire Extinguishing Agents Tested

Compound	State	Use Concentration	NOAEL
2-BTP (CH ₂ CBrCF ₃)	Liquid	Liquid 6% (6%)	
FK-5-1-12 (CF ₃ CF ₂ C(O)CF(CF ₃) ₂)	Liquid	>4.2% (8.1%)	10%
FM-200 (CF ₃ CHFCF ₃)	Gas	>8.5%	9%
Halon 1301 (CF ₃ Br), Baseline	Gas	Gas 5% (6%)	
HFC-125 (CF ₃ CF ₂ H)	Gas	>11.3% (15.6%)	7.5%
Water Mist/N2	Liquid/Gas	66g/m3 (<12% O2)	<19.5% O2 OSHA

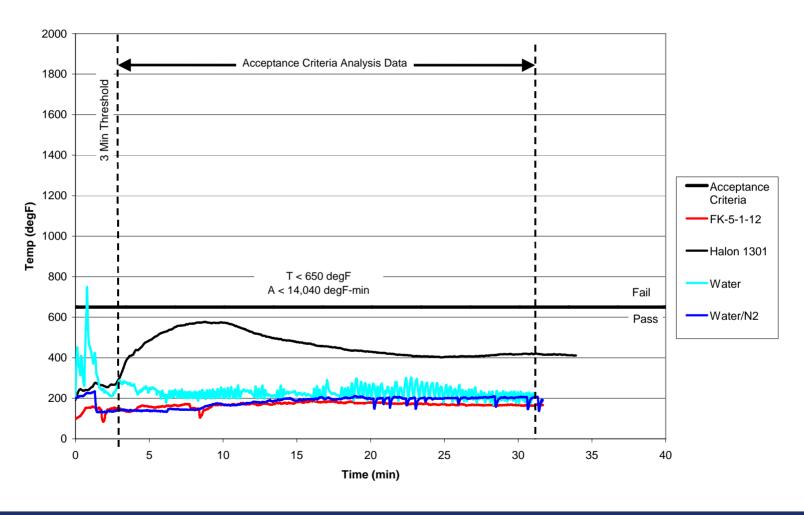
Outline

- Background
- MPS Fire Test Methods
- Fire Extinguishing Agents Tested
- Fire Test Results
- Final Words

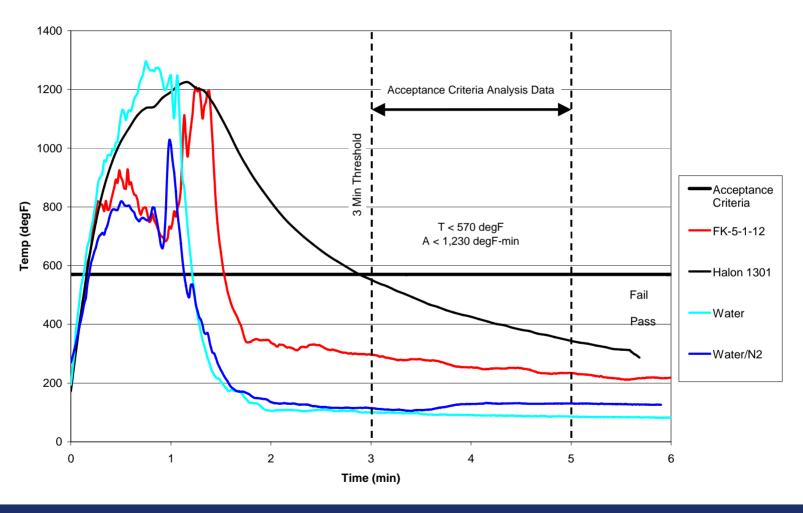
Federal Aviation



Bulk-Load Fire Test Movie

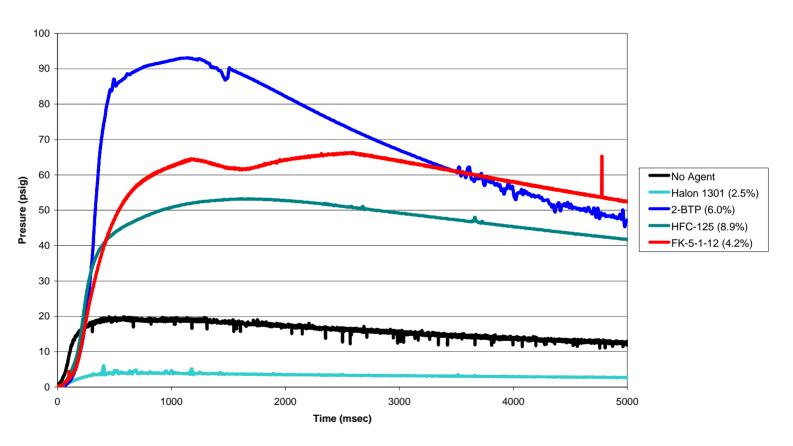


MPS BULK-LOAD FIRE TEST DATA RESULTS



MPS CONTAINERIZED FIRE TEST DATA RESULTS

MPS SURFACE BURN FIRE TEST DATA RESULTS



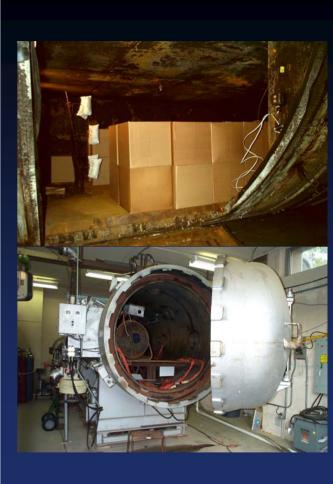
Aerosol Can Explosion Simulation Pre-Test (Screening) Method

AEROSOL CAN SIMULATION EXPLOSION TESTS

COMPARISON OF OVERPRESSURE HISTORIES OF VARIOUS AGENTS

Aerosol Can Explosion Test (Baseline: No XA)

Aerosol Can Explosion Test (Fuel Enhanced)



EXT. AGENT	BULK LOAD FIRE TEST	CONTAINERIZED FIRE TEST	SURFACE BURN FIRE TEST	AEROSOL EXPLOSION TEST	COMMENT
2-BTP	Not Tested	Not Tested	Not Tested	Failed (Below Inert)	Agent became part of the fuel that caused significant re-ignition temperatures and explosion enhancement. To prevent these events, it must be at inert concentrations (6%). See report DOT/FAA/AR-TN04/4
FK-5-1-12	Failed	Passed	Passed	Failed (Below Inert)	Agent became part of the fuel that caused significant re-ignition temperatures and explosion enhancement. To prevent these events, it must be at inert concentrations (8.1%). High dielectric strength (+). Report not available at this time.
FM-200	Failed	Not Tested	Not Tested	Expected to Fail (Below Inert)	Agent became part of the fuel that caused significant re-ignition temperatures and explosion enhancement. To prevent these events, it must be at inert concentrations (12%). See report DOT/FAA/AR-TN04/4
Halon 1301	Passed	Passed	Passed	Passed	It is the baseline and the acceptance criteria is based on its performance. See report DOT/FAA/AR-TN05/20
HFC-125	Failed	Data Not Available	Data Not Available	Failed (Below Inert)	Agent became part of the fuel that caused significant re-ignition temperatures and explosion enhancement. To prevent these events, it must be at inert concentrations (15.6%). See report DOT/FAA/AR-TN04/4
Water Mist	Passed	Passed	Passed	Failed	See report DOT/FAA/AR-01/121
Water Mist & Nitrogen	Passed	Passed	Passed	Passed	See report DOT/FAA/AR-01/121

Outline

- Background
- MPS Fire Test Methods
- Fire Extinguishing Agents Tested
- Fire Test Results
- Final Words

Federal Aviation

Final Words

In Summary,

- The FAA has a test protocol available to determine the fire suppression performance of new Halon 1301 replacement/alternative systems (for certification).
- Out of the seven agents/systems tested, only water mist combined with nitrogen is capable of meeting the MPS for aircraft cargo compartment.
- The FAA Fire Safety Team will continue evaluating agents/systems as they emerge and gain supports from industry.