

Effectiveness of Water Mist Droplet Size on Fire suppression in Air Craft Cabin and Cargo Compartment

Vahid Motevalli, Ph.D., P.E.

Aviation Institute The George Washington University, Washington D.C.

Fifth Aircraft Fire and Cabin Safety Research Conference October 29- November 1, 2007

Motivation

- Water mist has been identified as a potential alternative to Halons
- Smaller than 150 μm water mist droplets have been shown to be effective in fire suppression
- The physics of droplet size effects in terms of thermodynamic cooling vs. oxygen displacement need to be better understood
- Other applications of mist (other than water)

Advantages of water mist over sprinkler systems

- Water damage reduction
- Retrofit applications
- Weight considerations, aircraft applications
- Facilities where water vapor or run-off could cause higher damage

Applications include:

- Aircraft Cargo Compartments and Cabins
- Engine nacelle

Hidden spaces

Relevant Previous Research

- Study of the suppression Mechanism of Small Flames by Water Mist, Ndubizu et al. (1995, 1998, 2000)
- Minimum Performance Standard for Aircraft cargo compartment Halon Replacement Fire suppression Systems, Reinhardt et al. (2003)
- Spray as a fire suppression agent for aircraft cargo compartment fires, Marker et al. (2001)
- One zone model of water mist fire suppression systems, Li, Y. F. et al. (2004)

Relevant Previous Research

- Full-scale test effectiveness of water spray systems for improved aircraft fire safety, Sarkos et al. (1995)
- Cargo compartment fire protection in large commercial transport aircraft, Blake et al. (1998)
- Aircraft Cabin Fire Suppression by Means of an Interior Water Spray System, Whitfield et al. (1988)
- Small-scale and large-scale experimental research and testing at NRL

Competition between Oxygen Displacement and Thermodynamic Cooling

- Thermodynamic Cooling Water mist droplet evaporation removes energy due to latent heat
- Oxygen Displacement Water mist droplet evaporation creates a cloud of water vapor around each droplet that displaces the rest of gases including oxygen, thus causes a drop in oxygen concentration.

Water Mist Interaction in Flame Zone

$$n_{d} V_{d,w} \rho_{w} (Y_{vap} L_{v} + c_{p,w} \Delta T_{w}) + m_{f} h_{c} (\eta_{c} - \eta_{c,w}) = [(m_{in} + m_{ent})c_{p} \Delta T]_{out} - [(m_{in} + m_{ent,m} + Y_{vap} n_{d} V_{d,w} \rho_{w})c_{p} \Delta T]_{out,m} + (m_{en} - m_{ent,m})c_{p,air} \Delta T_{air}$$
[Ssues:

- Mist droplet penetration into the flame zone, fn (droplet size, velocity, flame intensity)
- Evaporation rate and efficiency of oxygen displacement is a function of surface area (d²)
- Modeling the chemistry to account for oxygen displacement

Theoretical Overview

Conservation equations with and without mist

$$\iint_{\text{inf }low} \rho uc_{p} dT dA + \dot{Q}_{c} = \iint_{\text{outflow}} \rho uc_{p} dT dA + \iint_{\text{entrained}} \rho vc_{p} dT dA_{x}$$

$$\iint_{\text{inf }low} \rho uc_{p} dT dA + (\dot{Q}_{c,m} - \dot{Q}_{latent}) = \iint_{\text{outflow}} \rho uc_{p} dT dA + \iint_{\text{entrained}} \rho vc_{p} dT dA_{x} + (mc_{p} \Delta T)_{w}$$

$$(\dot{Q}_{c} - \dot{Q}_{c,m}) + \dot{Q}_{latent} = (mc_{p} \Delta T)_{out} - (mc_{p} \Delta T)_{outm} + (mc_{p} \Delta T)_{ent} - (mc_{p} \Delta T)_{entm} - (mc_{p} \Delta T)_{w}$$

$$(\dot{Q}_{c} - \dot{Q}_{c,m}) = \dot{Q}_{02,\text{Displ.}} = (m_{f} \Delta h_{c} \eta_{c} - (m_{f} \Delta h_{c} \eta_{c,m}) = m_{f} \Delta h_{c} (\eta_{c} - \eta_{c,m})$$

A multi-zone model has been developed using conservation of mass and energy equations.

Four Distinct Zones

- 1. Upper layer
- 2. Plume
- 3. Flame
- 4. Ambient zone

Uniform temperature in each zone

Conservation of mass and energy with water mist interaction for the upper layer zone leads to the following equation:

Y_e, Evaporation Rate

L, Latent heat of evaporation

$$m_u = \rho A Z_u$$
 $m_{evaporated} = \dot{m}_w dt Y_e$

Using the conservation of mass and energy equation for nonflaming zones

$$\frac{dZ_u}{dt} = -\frac{\dot{m}_e}{\rho_a A} - \frac{\dot{Q}}{c_p \rho_a T_a A}$$
$$\frac{dT_u}{dt} = \frac{\dot{Q} - \dot{m}_e c_p (T_u - T_a)}{m_u c_p}$$

$$\underbrace{ \underset{m_u, T_u, c_p}{\text{Upper Layer}} Z_u }_{Mu}$$

Applying forward difference discretization

$$Z_{u_{i+1}} = \left(-\frac{\dot{m}_{e_i}}{\rho_a A} - \frac{\dot{Q}_i}{c_p \rho_a T_a A} \right) \Delta t + Z_{u_i}$$

$$T_{u_{i+1}} = \left(\frac{\dot{Q}_i - \dot{m}_{e_i} c_p (T_u - T_a)}{m_{u_i} c_p} \right) \Delta t + T_{u_i} \qquad m_{u_i} = \rho_a A Z_{u_i}$$

Water Droplet Evaporation Rate

According to D² Law for droplet evaporation:

$$D^2(t) = D_0^2 - Kt$$

- D (t): diameter of droplet as a function of time
- D_0 : initial diameter of the droplet
- K: Evaporation constant

$${\stackrel{\bullet}{m}}_{w} = {\stackrel{\bullet}{m}}_{in} \frac{Kt}{\rho D_0^2}$$

This relation would allow calculation of oxygen concentration diluted by water vapor

Evaporation Rate Formulation

$$K = \frac{8k_g}{\rho_l c_{pg}} \ln(B_q + 1)$$
$$B_q = \frac{c_{pg} (T_{\infty} - T_{boil})}{h_{fg}}$$

Using formulation by Turns, S. R., Kg, the mean thermal conductivity of gas is calculated

$$k_g = 0.4k_F(\overline{T}) + 0.6k_\infty(\overline{T})$$

$$\overline{T} = \frac{T_{boil} + T_{\infty}}{2}$$

 T_{boil} , the boiling temperature of the droplet (water droplet) k_{∞} , thermal conductivity of gas

Evaporation constant for $290 \le T(k) \le 2037$

Evaporation Rate for Different Droplet Sizes

Evaporation Rate for Different Droplet Sizes, Different Ambient Temperature

— T=900K — T=1000K — T=1100K — T=1200K

Results for Upper Layer Temperature Dimensions of Enclosure: Area : 12 m^2 , Height: 3 m Time Step (Δt =0.15 seconds) Fast Fire Growth

Fire Scenario: Fast Fire Growth Water Flow rate: 0.5 kg/s, Droplet size: 150 μm, 100 μm, 50 mm Total water used: 13.5 kg

Average rate of change for upper laver temperature. -1.102 °/s. -7.342 °/s. -21.08 °/s

- Upper Layer Temperature, Without Water Mist
- Upper Layer Temperature, Droplet Size= 150 microns
- Upper Layer Temperature, Droplet Size= 100 microns
 - Upper Layer Temperature, Droplet Size=50 microns

Fire Scenario: **Fast Fire Growth** Water Flow rate: **0.35 kg/s**, Droplet size: **100** μ**m**, Total water used: **0.5775 kg** Average rate of change for Plume zone temperature, **-8.115** %

— Plume ZoneTemperature, With Water Mist

— Pluem Zone Temperature, Without Water Mist

Water Droplet Size Effect in The Flame Zone Thermodynamic Effect Only

Proposed Experimental Approach

MEASUREMENTS

- Monodisperse mist
- Droplet size analyzer
- Temperature Measurement (TC)
- Thermal Mapping (IR Camera)
- Oxygen Concentration
- Mist evaporation Rate

Experiment Characteristics

- Wolfhard-Parker burner with co-flow
- 2-D flame, 10x1 cm, Up to 5 kW
- Premixed and Diffusion Flames
- Laminar flow in the burner

Premixed or Diffusion Flame

Conclusions

- Simpler mathematical models, as opposed to CFD, can be used to track mono-disperse droplets and examine flamemist interaction.
- Smaller droplets are more effectiveness in thermodynamic cooling, because of the surface area per unit mass, but suffers with lower mass per droplet
- Oxygen displacement is a function of droplet surface area but is only important in the flame zone
- A carefully designed experiment proposed here can be used to resolve the question of oxygen displacement effect vs. thermodynamic cooling
- Quantity of water used can be reduced for several suppression applications, such as air cabin and cargo compartment