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Motivation
• Water mist has been identified as a potential alternative to Halons
• Smaller than 150 μm water mist droplets have been shown to be 

effective in fire suppression
• The physics of droplet size effects in terms of thermodynamic 

cooling vs. oxygen displacement need to be better understood
• Other applications of mist (other than water)

Advantages of water mist over sprinkler systems
• Water damage reduction
• Retrofit applications
• Weight considerations, aircraft applications
• Facilities where water vapor or run-off could cause higher damage

Applications include:
• Aircraft Cargo Compartments and Cabins
• Engine nacelle
• Hidden spaces



Relevant Previous Research

• Study of the suppression Mechanism of Small 
Flames by Water Mist, Ndubizu et al. (1995, 1998, 
2000)

• Minimum Performance Standard for Aircraft cargo 
compartment Halon Replacement Fire suppression 
Systems, Reinhardt et al. (2003)

• Spray as a fire suppression agent for aircraft cargo 
compartment fires, Marker et al. (2001)

• One zone model of water mist fire suppression 
systems, Li, Y. F. et al. (2004)



• Full-scale test effectiveness of water spray systems 
for improved aircraft fire safety, Sarkos et al. (1995)

• Cargo compartment fire protection in large 
commercial transport aircraft, Blake et al. (1998)

• Aircraft Cabin Fire Suppression by Means of an 
Interior Water Spray System, Whitfield et al. (1988)

• Small-scale and large-scale experimental research 
and testing at NRL

Relevant Previous Research



Competition between Oxygen Displacement 
and Thermodynamic Cooling

• Thermodynamic Cooling - Water mist 
droplet evaporation removes energy due 
to latent heat

• Oxygen Displacement – Water mist 
droplet evaporation creates a cloud of 
water vapor around each droplet that 
displaces the rest of gases including 
oxygen, thus causes a drop in oxygen 
concentration.



Water Mist Interaction in Flame Zone
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Issues:
• Mist droplet penetration into the 
flame zone, fn (droplet size, 
velocity, flame intensity)

• Evaporation rate and efficiency 
of oxygen displacement is a 
function of surface area (d2)

• Modeling the chemistry to 
account for oxygen displacement



Theoretical Overview

• Conservation equations with and without mist
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A multi-zone model has been developed using 
conservation of mass and energy equations.

Four Distinct Zones

1. Upper layer
2. Plume
3. Flame
4. Ambient zone

Uniform
temperature 
in each zone
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Conservation of mass and energy with water mist 
interaction for the upper layer zone leads to the following 

equation:
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Using the conservation of mass and energy equation for non-
flaming zones
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Applying forward difference discretization



Water Droplet Evaporation Rate

According to D2 Law for droplet evaporation:

( ) KtDtD −= 2
0

2

D (t):  diameter of droplet as a function of time
D0 : initial diameter of the droplet
K: Evaporation constant
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This relation would allow calculation 
of oxygen concentration diluted by 
water vapor



( )
fg

boilpg
q h

TTc
B

−
= ∞

Using formulation by Turns, S. R., Kg, the mean thermal 
conductivity of gas is calculated
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Evaporation constant for ( )290 2037T k≤ ≤

y = -3E-17x3 + 1E-13x2 - 2E-11x - 5E-09
R2 = 0.9998

1.00E-09

5.10E-08

1.01E-07

1.51E-07

2.01E-07

2.51E-07

3.01E-07

290 590 890 1190 1490 1790 2090

T∞(k)

K
(m

2 /s
)



Evaporation Rate for Different Droplet Sizes
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Evaporation Rate for Different Droplet Sizes,
Different Ambient Temperature
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Results for Upper Layer Temperature
Dimensions of Enclosure: Area : 12 m2 , Height: 3 m

Time Step (Δt=0.15 seconds)
Slow Fire Growth
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Results for Upper Layer Temperature
Dimensions of Enclosure: Area : 12 m2 , Height: 3 m

Time Step (Δt=0.15 seconds)
Fast Fire Growth
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Fire Scenario: Fast Fire Growth
Water Flow rate: 0.5 kg/s, Droplet size: 150 μm, 100 μm, 50 mm 

Total water used: 13.5 kg
Average rate of change for upper layer temperature, -1.102 º/s, -7.342 º/s, -21.08 º/s
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Fire Scenario: Fast Fire Growth
Water Flow rate: 0.35 kg/s, Droplet size: 100 μm, Total water used: 0.5775 kg

Average rate of change for Plume zone temperature, -8.115 º/s



Water Droplet Size Effect in The Flame Zone
Thermodynamic Effect Only
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Proposed Experimental Approach
MEASUREMENTS

• Monodisperse mist

• Droplet size analyzer

• Temperature Measurement (TC)

• Thermal Mapping (IR Camera)

• Oxygen Concentration

• Mist evaporation Rate
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Experiment Characteristics
• Wolfhard-Parker burner with co-flow
• 2-D flame, 10x1 cm, Up to 5 kW 
• Premixed and Diffusion Flames
• Laminar flow in the burner

IR Camera



Conclusions
• Simpler mathematical models, as opposed to CFD, can be 

used to track mono-disperse droplets and examine flame-
mist interaction.

• Smaller droplets are more effectiveness in thermodynamic 
cooling, because of the surface area per unit mass, but 
suffers with lower mass per droplet

• Oxygen displacement is a function of droplet surface area 
but is only important in the flame zone 

• A carefully designed experiment proposed here can be 
used to resolve the question of oxygen displacement 
effect vs. thermodynamic cooling

• Quantity of water used can be reduced for several 
suppression applications, such as air cabin and cargo 
compartment
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