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• FAA developed a proof of concept inerting system to 
inert the CWT of classic style Boeing model 747
− FAA intends to make a rule requiring flammability control of 

some or all CWTs with an emphasis on inerting system 
technologies

− Potential for using these systems to expand fire protection 
needs to be explored

• Cargo bay fire suppression is done in two parts
− First part dispenses large volume of agent rapidly to 

suppress fire / Second part dispenses a fixed amount of 
agent slowly for leakage, based on the aircraft type

− It remains to be seen how useful an OBIGGS designed to 
inert the CWT of an aircraft would be for this purpose

Background
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Test Article – ASM Performance Testing
• Placed single D-640 ASM in altitude chamber and 

measured NEA flow and purity under a variety of 
conditions relevant to aircraft cargo bay fire protection
− Primary factors effecting ASM performance are ASM feed 

pressure, ASM permeate pressure, and purity (residual 
oxygen concentration) of NEA being made

− All data presented for D-640 ASM at 180 degrees F
− Looked at ASM performance changes due to varying deposit 

pressure (i.e. cargo bay pressure changes)

• Used this data as input to inerting model given the 
different altitudes, bleed air pressures, and cargo bay 
altitudes to examine the ability for an inerting system 
to reduce the oxygen concentration of a cargo bay
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Block Diagram of ASM Performance Test Apparatus
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Test Article - 747SP Cargo Bay
• Used existing 747SP ground test article, with OBIGGS 

installed, to study the issues associated with cargo bay 
inerting on ground
− Plumbed the OBIGGS to allow for inerting the aft cargo bay with 

a simple deposit system
− Can deposit 1-6 ASMs amount of NEA of varying purity in bay
− Eight gas sample locations in cargo bay used to continually 

measure oxygen concentration during testing
− Also can measure flow and purity of NEA being deposited
− Multiple temperatures and pressure in aircraft available

• Using the ground tests to validate the model that is 
being used to determine the effectiveness of a CWT 
inerting system as to cargo bay fire protection
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Rendering of Cargo Bay with Gas Sample Locations 
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Modeling Methods
• Modified existing single bay fuel tank inerting model to allow 

for a constant air leakage in addition to deposited NEA
− Model calculates moles of air in / out tank due to depositing inert 

gas, changing cargo bay pressure altitude, and a fixed air leak rate in
− All model calculations were for an OBIGGS using six D-640 ASMs

• Extensive amount of ASM performance data acquired in lab first
− This allowed for calculation of time to inert for constant conditions to 

determine the amount of time to reach the inerting oxygen 
concentration (12 and 15%) in a cargo bay of fixed volume with a
constant leakage using NEA

• Model assumes NEA flow “holds back” the leakage

• Added routine to calculate Halon concentration
− Used model to determine time not inert for previously studied 

OBIGGS/aircraft conditions using given Halon discharge in the same 
cargo bay with assumed leakage (assume 3% Halon inerting conc.)
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Modeling Method – Altitude Calculation Model
− Basic equation governing oxygen concentration calculation

21.21.*)*()1()*(

)1()1()(
22

∗Δ∗+Δ+−∗Δ−

−∗Δ∗−∗Δ∗+−=

tmVtUGOFV

tUGOFtmIGOFtmtmtm

LeakTankTank

OO

&

&&

ρρ

With: =   Mass of oxygen in tank at time t
=  Mass flow rate of inerting gas (in terms of t)

IGOF =   Fraction of oxygen in inerting gas
Δρ =  Change in Ullage Density due to Altitude Change
VTank =  Volume of Tank Ullage
mTank =  Mass of Gas in Tank
mLeak =  Mass of air entering tank

Ullage Gas Oxygen Fraction (UGOF) is given as:

)(
2

tmO

m&

TankO tmtmtUGOF )1(/)1()1(
2

−−=−

− Calculate Halon concentration similarly

ayayay
MtMtM

B B B HalonHalonHalon )1()( Δ+−=

)(
)(

)( tM
tM

tF
Bay

Halon
Halon

Bay

Bay
=



9Federal Aviation
Administration

NEA Cargo Bay Fire Suppression
November 1, 2007

Results – ASM Performance Data
• Tests illustrate that the NEA flow for all conditions is 

very sensitive to the ASM feed pressure
− Increasing the pressure by 50% (30-45 psia) gives nearly 6 

times the flow of NEA
− Permeate pressure (altitude) also has a big effect on the NEA 

flow of a given purity, particularly at low feed pressure where 
the ASM make 2-3 times as much 5% NEA at 20,000 feet than 
it does at sea level depending on the feed pressure

− Validated that ASM performance is independent of cargo bay 
(deposit) pressure

• Doesn’t mean all points acquired at reduce pressure can be obtained at
sea level

• These numbers were used in the cargo bay model to 
give the results of time to inert and time not inert 
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Results of ASM Performance Testing
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Results of ASM Performance Testing
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Results – Time to Inert
• Used the model to calculate oxygen concentration time 

traces given different ASM and cargo bay conditions 
for an empty 2600 cubic ft bay with no net leakage

• Results show 
expected trends
− Very sensitive to 

ASM feed 
pressure

− Permeate alt. is 
also important

− Decreasing cargo 
bay pressure 
gives smaller time 
to inert values
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Results of Time to Inert Calculations
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Results of Model Full-Scale Validation
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Results – Time not Inert
• Used model to calculate oxygen and Halon 

concentration time traces given different ASM, cargo 
bay, and feed pressures with empty 2600 ft3 bay and 50 
SCFM Leakage and 5% Halon Shot

• Similar Trends 
Except:
− Can’t get lower 

than 16% with 30 
psia Feed P below 
20K feet Permeate

− 5% NEA better 
than 10% because 
flow displaces less 
Halon 0
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Results of Time Not Inert Calculations
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Results of Time Not Inert Calculations
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• Wanted to see sensitivity of results to the constant 
parameters of bay size, Halon shot, leakage rate, and 
cargo load

• Size of cargo bay had very little impact on time not inert
− Bigger cargo bay means bigger Halon shot

• Halon shot size decreased time not inert as expected
• Sensitivity to leakage rate is expected

− Need to have a good idea of leakage rate and bleedair pressure 
during your descent to ensure the cargo bay stays protected 
during remainder of flight

• Increased cargo load also has the expected result of 
decreasing time not inert
− 50% cargo load decreased 90 minute time not inert to 0 (12% O2)

Results – Time not Inert Sensitivity
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• Results indicate OBIGGS requirements are consistent with 
cargo bay fire protection
− NEA flow very sensitive to bleed air pressure

• Time to inert results illustrate expected trends
− Decrease in permeate pressure (alt. increase) decrease time to inert

• Time not inert results (with Halon) illustrate expected trends
− Decrease in permeate pres. (alt. increase) decrease time not inert
− Decreases in bay pressure also decrease the time not inert
− Leakage rate makes many 30 psia feed pressure points unattainable

• Sensitivity of time not inert results show results not sensitive
to cargo bay size, but cargo density has large effect
− Feed pressure and leakage rate to need to be analyzed and 

accounted for in design

Summary


