Fire & Cabin Safety Research Conference

Lamart Corporation Clifton, NJ David Shields Director of Business Development October 25, 2001

Evaluating Pressure Sensitive Tapes for **Insulation Blankets**

Reasons For Testing

• Comparison (product qualification)

• Control (quality processes)

"Test Methods for Pressure Sensitive Adhesive Tapes, 13th Edition," Pressure Sensitive Tape Council (PSTC)

Misconceptions

Misconceptions

Relevant Test Methods Peel Tack Shear (holding power) Tensile Elongation Environmental conditioning (aging)

Acrylic Adhesives

- Blends of copolymers determine peel, tack & shear values
 - Higher molecular weight increases shear
 - Lower molecular weight increases tack
 - Blending high MW & low MW gives desired balance of peel tack & shear

Rubber Adhesives

- Peel
 - Resins
 - Plasticizers
 - Antioxidents
- Tack
 - Resins
 - Plasticizers
 - Polymer

• Shear

- Polymer
- Fillers (tio₂)

Peel Adhesion

• DEFENITION: "The force per unit width required to break the bond between a pressure sensitive adhesive tape and the surface to which it has been applied when the tape is peeled back at a controlled angle at a standard rate and condition."

180⁰ Peel Adhesion

• SIGNIFICANCE: Allows for the comparative measurements of the adhesion of PS tape systems using a standard test method. Also measures the uniformity of quality of a given PS tape system.

180⁰ Peel

180⁰ Peel

• Reporting results: oz./Inch of width; n/mm of width

Peel

- Useful conversions
 - Force

• Newtons	$N = oz \ge 0.2780$
• lbs	$oz = N \ge 3.5969$
• OZ	$N = lb \ge 4.4472$
	lbs. = $N \ge 0.2249$
• gm	gm = 0.0353 oz
Width	

- mm = in x 25.40
- inches
- in = mm x .0394

Peel - Variations

• 90⁰ peel

• 180⁰ peel for double coated PS tapes

• Test panel composition

Peel - Variations

- Weight of roller & number of roller passes
- Dwell time
- Environmental conditioning
 - Temperature
 - -60 ⁰F to 160⁰F
 - High humidity

Depends on WET OUT: The amount a pressure sensitive adhesive (PSA) flows after tape application.

Peel

If a PSA tends to flow too much, it may lead to EDGE OOZE: When the sides of a roll of PS tape become tacky because of excessive adhesive flow or when the tape is wound too tightly.

Tack

• DEFINITION: "The property of a pressure sensitive adhesive that allows it to adhere to a surface under very slight pressure. It is determined by the ability of the adhesive to quickly wet the surface it contacts."

• SIGNIFICANCE: "The rolling ball tack test is one method of attempting to quantify the ability of an adhesive to adhere quickly to another surface."

- Reporting results: inches; millimeters
 - Report average of 5 (minimum) tests
 - Use fresh test specimen for each test
 - Clean ball after each use

• When comparing results with other labs, make sure test apparatus is identical

Tack - Variations

• Quick stick

• Polyken probe

• Rolling ball with lighter ball

Tack

• Tack is not a predictor of peel adhesion

• As tack increases, shear can decrease

Shear (Holding Power)

• DEFINITION: "The ability of a tape to resist static forces applied in the same plane as the backing. Usually expressed in a time required for a given weight to cause a given width of tape to shear free from a vertical panel." Shear (Holding Power)

• SIGNIFICANCE: measures a PS tape's ability to resist "creeping" on a vertical surface.

• Reporting results

- Length of creep

– Time to failure

Shear - Variations

• Elevated temperature

• Dynamic shear

• Combination of elevated temperature and dynamic shear

Peel, Tack & Shear Comparisons

	18	0 ⁰ Peel	RB Tack	Shear
	<u>o</u>	<u>z./in.</u>	inches	<u>minutes</u>
•	A (PI)	61	5.10	140
•	B (PI)	51	6.75	778
•	C (PVF)	74	0.50	76
•	D (PVF)	79	0.25	45
•	E (PET)	42	0.92	16

Tack/Shear Trend (Lines = Tack Bars = Shear)

Tensile (Breaking Strength)

- DEFINITION: "The force required to break a unit width of tape by controlled pulling on opposite ends of the piece."
 - Machine direction
 - Cross machine direction

Tensile (Breaking Strength)

• SIGNIFICANCE: Measurement of the ability of a tape backing "to withstand stress in application and service."

Tensile

Tensile

Tensile

• Reporting results: lb/inch; newtons/mm

- Useful conversions:
 - Newtons/100 mm N/100 = lb/in x 17.5127
 - Lb/in lb/in = N/100 mm x 5.72

Elongation

• DEFINITION: "The distance a tape will stretch in a machine or cross direction before breaking under controlled conditions, expressed as a percentage of original length." Elongation

• SIGNIFICANCE: Indication of how much a tape will stretch, and therefore how much "relaxation" force a tape may experience immediately after tape application. Elongation

• Scrim decreases elongation

Key Issues

 Conditions That Can Affect the Performance of a PS Tape

 During Application
 In Service

Key Issues

• Clean surfaces

• Sufficient pressure

• Limited elongation (especially an issue w/ non-reinforced tapes)

• No Si contamination on PS surface

- Storage @ 70⁰ F & 50% RH
 - Acrylic adhesives generally more forgiving than rubber adhesives

• Eliminate extreme temperature changes just before application

• Applying tape under tension, then exposing taped structure to temperature extremes may cause tape failure

• Too much tack can cause shear problems

• Tack is no indication of peel adhesion

Test Methods

- PSTC
 - PSTC 101
 - PSTC 6
 - PSTC 107
 - PSTC 31

• ASTM

- ASTM D3330/D3330M
- ASTM D 3121
- ASTM D3654/D3654M
- ASTM D3759

Fire & Cabin Safety Research Conference

Lamart Corporation Clifton, NJ David Shields Director of Business Development October 25, 2001

