

A Status Report on Turbulence Warning Technology

Rod Bogue - NASA Dryden Flight Research Center October 24, 2001

Briefing Outline

- The Turbulence Hazard
 - Sources of Turbulence
 - Accident Statistics
 - Accident/Injury Characteristics
 - Cabin Accelerations
 - Costs
- Turbulence Issues
- Approach to Risk/Injury Reduction
 - Cabin Procedures/Training Cabin Design
 - Warnings
- Warning Issues
 - Existing Warnings
 - Advanced Time

Briefing Outline (cont.)

- Remote Warning Technology
 - General Principles/Operating Concept
 - Radar
 - Hardware/Testbed Aircraft
 - Operating Parameters
 - Warning Display
 - Flight Test Summary
 - Lidar
 - Hardware/Testbed Aircraft
 - Operating Parameters
 - Flight Test Display
 - Flight Test Summary
- Warning Technology Summary

Sources of Turbulence

Natural Turbulence

Convective Induced

Mountain-wave Induced

Jet-stream Induced

Man-Made Turbulence

International Aircraft Fire & Cabin Safety Research Conference 9/23-25/01

Turbulence Accident Trends

Turbulence Accidents per Million Flights US Carriers, Based on Part 121 Definition

Serious/Fatal Turbulence Injury History

Aspects of Turbulence Accidents/Incidents

- Few commercial aviation fatalities (1 each 1987, 1990, 1997)
- Many serious <u>Flight Attendant</u> and Passenger injuries and numbers growing
 - Average 6-7 accidents and 8 serious injuries per year, 1980 to 1995
 - Sudden rise, 1995-2000 to 12 accidents and 16 serious injuries per year
 - 70 minor injuries for every serious injury (est.)
- Negligible aircraft damage and hull loss
- Numerous shallow but few data-rich accident/incidents
- Successful avoidance or mitigation of turbulence is heavily dependent upon information that is often:
 - Unavailable,
 - Inaccurate, or
 - Unreliable

A Status and Progress Report on Turbulence Warning Technology

Example of Severe Turbulence Encounter Cabin Acceleration

Turbulence Costs

(Difficult to quantify)

- One Airline's Experience
 - "...on an annual basis it (AA's turbulence costs) is in the double-digit millions of dollars....last year we had 235 workers compensation claims related to turbulence encounters; those claims resulted in some 7,000 days of injury-related disability or lost time...the equivalent of 21 work-years at American alone."
 - Robert Baker, VP Operations, American Airlines.
- 50% of injuries are to Flight Attendants
 - Average 10,000 lost workdays/year through 1994
 - Average 15,000 lost workdays/year since 1994
 - For each injury, 11 workdays lost (est.)
- Estimated >\$ 100M yearly
- One carrier averages 9 turbulence encounters resulting in 24 injuries per month
- Leading cause of in-flight injuries
- Major contributor to passenger's fear of flying

Turbulence Issues

- Challenges
 - Characterization
 - Buildup & Decay cycle
 - Persistence
 - In-situ testing
 - Finding turbulence
 - Measurement standardization (Eddy Dissipation Rate /Cabin Acceleration)
- Understood
 - Injury-producing motion
 - Vertical Acceleration (-g most dangerous)
 - Rear cabin most susceptible
 - Protection strategy
 - Fasten seat belt!!!
 - Heed Crew Warnings

A Status and Progress Report on Turbulence Warning Technology

Coordinated Approach to Turbulence Injury Risk Reduction

An End-to-End Turbulence Warning System

Current Turbulence Warnings

- Forecasts
 - Broad, non-specific location
 - + Substantial work on-going and accuracy improving
- Visual Cues
 - Vicinity of Convective activity
 - Cirrus cloud patterns
 - Jet Stream boundaries
 - Mountain Waves
- Pilot Reports
 - Observing/Ownship Dependent
 - Subjective
 - Spotty Capture & Dissemination
 - + Direct Experience

The Question of Warning Time

A Status and Progress Report on Turbulence Warning Technology

General Principle of Doppler Radar/Lidar Turbulence Measurement

Doppler Radar/Lidar Operating Concept

Note: At long ranges L is determined by pulse length. δf is an index of airspeed variation over length L.

NASA Langley B757 Radar Testbed Aircraft

Research Weather Radar

A Status and Progress Report on Turbulence Warning Technology

g-Loading (rms g) Event 191-06

Radar Flight Test Summary

- 4 flights totaling 15 hours on NASA 757
- Flight Conditions Encountered
 5,000-30,000 ft MSL altitude operation
 Mostly clear, occasional clouds
 Encountered moderate to severe turbulence
 18 Convective Events
 1 Severe Event with g's

NCAR Electra Lidar Testbed Aircraft

NASA Dryden DC-8 Lidar Testbed Aircraft

International Aircraft Fire & Cabin Safety Research Conference 9/23-25/01

Lidar on DC-8

International Aircraft Fire & Cabin Safety Research Conference 9/23-25/01

DC-8 Outside Periscope

A Status and Progress Report on Turbulence Warning Technology

LIDAR Airspeed Results in Turbulence Encounter

- "Isolated" moderate turbulence region in light turbulence
- Detected ahead and observed as aircraft approached
- Moderate turbulence observed aboard aircraft (25 sec later)
- Aircraft traversed through turbulence and into smoother air

Sample Turbulence Encounter

Lidar Flight Test Summary

- 5 flights totaling 15 hours on NCAR Electra
- Flight Conditions Encountered 5,000-25,000 ft MSL altitude operation Mostly clear, occasional clouds **Encountered light to moderate turbulence** Mountain-wave-induced

Convective

Cloud/Virga

- 13 flights totaling 83 hours on NASA DC-8
- Flight Conditions Encountered
 - 24,000-39,000 ft MSL attitude operation
 - Mostly convective conditions, occasional dry air
 - Encountered light to severe turbulence in/out of cloud

Lidar Flight Test Summary (Cont.)

- Sensor readily capable of detecting light or stronger turbulence ahead of the aircraft
 - Measures apparent strength of turbulence as well as time to encounter
 - Positive correlation with on-board in-situ sensors
 - Range performance compares favorably with expectations
 - 4-6 miles for 11,000-15,000 ft MSL
 - 2 miles for 25,000-39,000 ft MSL and cloudless conditions

Turbulence Hazard Summary

- Turbulence is the leading cause of in-flight injuries and is estimated to cost the airline industry > \$100M/year
- The turbulence hazard is not completely characterized from an atmospheric perspective but understanding is improving
- The approach to risk reduction includes cabin design, cabin procedures, improved forecasting as well as warning technology development
- Progress is being made with warning technology
 - Enhanced Weather Radar
 - Implemented with software change in existing Weather Radar sets
 - Most mature technology, Available 2-3 years
 - Lidar
 - Implemented with Lidar transceiver and signal processing hardware
 - · Hardware integration an issue for existing fleet aircraft
 - Requires increased transmitted pulse energy
 - Available est. 5-7 years

Out-of-Scope "Turbulence"

Out-of-Scope "Turbulence" (cont.)

