#### Mechanism of Ignition of Jet A by Silver Oxide Deposits\*

Jeff D. Colwell Exponent Failure Analysis Associates Los Angeles, CA

#### Thomas M. Korb and Robert E. Peck

Department of Mechanical and Aerospace Engineering Arizona State University Tempe, AZ

Presented at the Third Triennial Fire & Cabin Safety Conference, October 22-25, 2001 Atlantic City, New Jersey

\*Research Sponsored by the Federal Aviation Administration



# Outline

- Objectives
- Experimental Procedure
- Deposit Growth and Ignition Test Results
- Thermal Model and Surface Temperature Measurements
- Deposit Composition Analysis
- Conclusions



## **Objectives**

- Determine if Fuel Quantity Indicating System (FQIS) deposits pose an ignition hazard
- Determine the ignition mechanism
- Quantify the electrical input necessary to cause ignition



## **Experimental Approach**

- Grow silver oxide deposit with water electrolysis
  - V = 6-20 vdc; constant
- Test deposit for ignition
  - Place deposit in flammable vapors in flash point tester
  - Dip deposit in the Jet A in the flash point tester
  - Increase voltage across the deposit at a rate of 1 V/s.
    - If there is measurable current, continue test until voltage reaches 35 volts
    - If no measurable current, terminate test
  - If resistance becomes too high, perform a water electrolysis step to lower resistance



## **Ceramic Insulator Configurations**

- Flat ceramic insulator used for imaging and material testing
- Cylindrical ceramic insulator used for ignition testing





## Flash Point Tester

- Tag Open-Cup Flash Point Tester
- Jet A Flash Point = 131 °F
- Jet A Temperature = 140 °F
- Deposit replaces the flame ignition source used for flash point test





## **Data Acquisition System**

- National Instruments Data Acquisition System
- Power supply controlled by analog output
- LabView data collection
- Sample rate of 30 Hz
- Current measured using a current sense resistor
- D.C. power supply; 35 volts and 6 amps max.





## **Typical Deposit Growth Sequence**

|      | Liquid  | Pre-test | Post-test |          |
|------|---------|----------|-----------|----------|
| Step | Applied | R (Ω)    | R (Ω)     | Ignition |
| 1    | Water   | —        | 3         | _        |
| 2    | Jet A   | 3        | 18,000    | Ν        |
| 3    | Water   | 18,000   | 14        | _        |
| 4    | Jet A   | 14       | 2.4       | Ν        |
| 5    | Jet A   | 2.4      | 42        | Ν        |
|      |         |          |           |          |
|      |         |          |           |          |
| 18   | Jet A   | 47       | 3,000     | Y        |



•

## **Initial Electrolysis Step**





#### **Initial Silver Oxide Deposit**







#### Mature Silver Oxide Deposit





## **Typical Ignition Attempt**





## Ignition Test - 5 W





### Ignition Test - 8 W





### Ignition Test - 10 W





### Ignition Test - 13 W





## **Typical Voltage and Current - No Ignition**

- Voltage is increased at 1 V/s
- Current is limited to 2 Amps
- Deposit resistance appears to suddenly increase
- Apparent resistance (V/I) varies from about 1 ohm to 1000 ohms during test

Post-Test

360 ohms

Resistance





**Pre-Test** 

30 ohms

Resistance

#### Power Versus Ignition Attempts Deposit 1

 Power dissipation increases with cumulative ignition attempts





#### Power Versus Ignition Attempts Deposit 2

 Power dissipation behavior varies from one deposit to another





## Logistic Regression Results

- 221 Ignition attempts
- Data is fit to the form

$$E[Y] = \frac{\exp(\beta_0 + \beta_1 X)}{1 + \exp(\beta_0 + \beta_1 X)}$$

- Chi-squared goodness-of-fit
  *P*-value = 0.66
- Power is a relatively good predictor of ignition





## **Thermal Model**

- Determine the surface temperature of the ceramic insulator
- Electrical power is uniformly distributed across the top cross-section
- Heat loss is by convection
- Bottom surface is insulated
- Solution is:



Insulated End

$$T(t,x) = -\frac{q}{km}\sinh(mx) + \frac{q}{km}\frac{\cosh(ml)}{\sinh(ml)}\cosh(mx) + T_{\infty}$$
$$-\frac{q}{klm^2}e^{-(hP\alpha/kA)t} + \sum_{n=1}^{\infty}\frac{-2q}{kl(m^2 + \lambda_n^2)}e^{-(hP\alpha/kA + \alpha\lambda_n^2)t}\cos(\lambda_n x)$$



## Measured and Computed Surface Temperature

- Measured temperature exceeds the hot surface ignition temperature of Jet A
- Computed temperature indicates that electrical power alone could be responsible for observed temperature
- Model could be improved: 2D effects; radiation; phase changes





## Minimum Power for Ignition

- Ignition model area dependent
- Thermal model area dependent
- May be a point of minimum electrical power



Hot Surface Area

Curves are dependent on: fuel type, equivalence ratio, orientation, ambient pressure, ambient temperature and exposure time



## **Deposit Composition**

- Initially the deposit is silver oxide
- After numerous ignition tests, the deposit is very durable
- Deposit can be removed from ceramic in a single piece
- Surface is carbon with spherical features





#### **Open Sphere – Analysis Areas Indicated**





# Auger Analysis of Sphere and Shell

| Area | Description      | % Silver | % Carbon | % Oxygen |
|------|------------------|----------|----------|----------|
| 1    | Sphere           | 91.8     |          | 8.2      |
| 2    | Outside of shell | 0.6      | 97.2     | 2.1      |
| 3    | Inside of shell  | 12.8     | 85.5     | 1.8      |

Note: Auger analysis technique cannot detect elements of molecular weight less than 5 (boron) or determine whether carbon is a hydrocarbon.





### **Cross-Section of Deposit**



- White areas are silver or silver oxide (EDX)
- Gray areas are disordered and graphitic carbon, no hydrocarbon detected (EDX, Raman, FTIR)
- Carbon layering is consistent with multiple ignition tests



## Conclusions

- Silver oxide deposits do pose an ignition hazard
- Electrical power dissipation is a good predictor of ignition
- The ability of the deposit to dissipate power depends on the number of ignition attempts
- Deposit composition changes from silver oxide to graphitic carbon
- A thermal model indicates that electrical power alone could be responsible for the observed surface temperatures
- This conversion of electrical power to heat can yield a hot surface capable of causing ignition of flammable Jet-A vapors
- To date no ignitions observed with electrical input limited to 30 mA and 35 VDC

