

ALTERNATE FIRE SUPPRESSION RESEARCH FOR AIRCRAFT ENGINE NACELLES AND DRY BAYS

NEXT GENERATION FIRE SUPPRESSION TECHNOLOGY PROGRAM [NGP] www.bfrl.nist.gov/866/NGP

Richard G. Gann, Ph.D. Building and Fire Research Laboratory National Institute of Standards and Technology

3rd Triennial Int'l Aircraft Fire and Cabin Safety Research Conference October 25, 2001

THE NGP

- Halon 1301 has been out of production since January 1, 1994
- There is uncertainty about the sufficiency and longevity of the supply
- Fire suppression is essential to the readiness and effectiveness of nearly all weapons systems
- The NGP is in place because the cost of environmental stewardship (*i.e.*, retrofitting or designing with current alternatives) is huge

GOAL

Develop and demonstrate technology for economically feasible, environmentally acceptable and user-safe processes, techniques, and fluids that meet the operational requirements currently satisfied by halon 1301 systems in aircraft

- Pertains to both current and planned platforms
- Results will likely be of benefit to other applications

Environmental Research

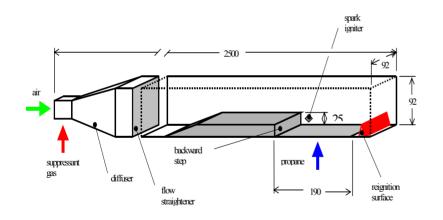
NGP RESEARCH AREAS

- New Flame Suppression Chemistry
- Suppressant Screening Tests
- New and Improved Aerosol Suppressants
- Better Suppressant Delivery
- Viability of New Suppression Technologies
- Fuel Tank Inertion

\downarrow

- New Flame Suppression Chemicals
- Improved Suppressant Storage and Delivery

Environmental Research


NGP DELIVERABLES

- A suite of screening tools and guidance for their use [2000]
- Identification of the best places to look for alternative chemicals and a first set of "best looks" [2000]
- A method for determining and comparing the total life-cycle costs of new fire suppression technologies [2001]
- Specific chemicals as in the goal statement [2002-2005]
- Verified precepts for improved suppressant delivery [2002-2005]
- Validated modeling to guide the selection of optimal dispensing and distribution conditions for the variety of nacelle and dry bay configurations [2002-2005]
- Limited toxicity testing and real-scale experiments [2002-2005]

SUPPRESSANT SCREENING TESTS

- Completed last screen: Transient Application, Recirculating Pool Fire (TARPF) agent effectiveness screen
- For the first time, compressed and solid-propellant-generated gases compared side by side
- Modeled for extrapolation
- Held workshop with SPGG
 manufacturers
- Aerosol suppressants deferred until the demand arises

NEW FLAME SUPPRESSION CHEMISTRY

- Comprehensive view of fire suppression
 - Chemically active agents reduce flame radicals toward equilibrium levels
 - Adding heat capacity reduces the flame temperature and thus the flame reaction rates below the level needed to sustain combustion
 - Non-linear synergism
 - Suppression concentration limit may be at ~1 % (mole)
- Search attributes
 - Fire suppression efficiency at least comparable to halon 1301
 - Short atmospheric lifetime (<1 month)
 - Low toxicity relative to the concentration needed for suppression
 - High volatility (low BP) to achieve an extinguishing concentration quickly

NEW CONCERN

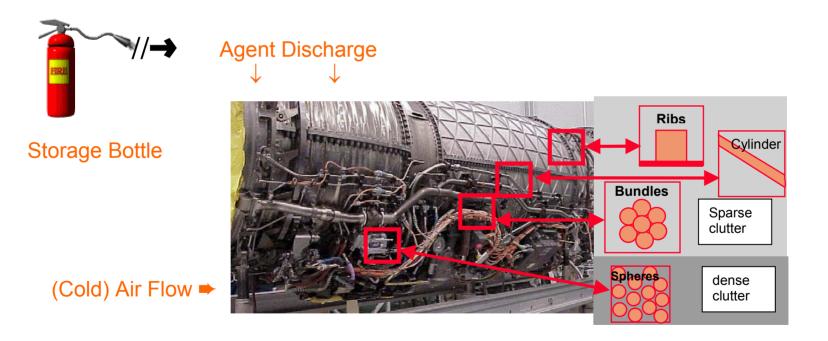
- Effectiveness of some types of chemicals varies significantly in different laboratory tests (where there is no "right" answer yet)
 - Inert, thermal agents and halocarbons are consistent across burners
 - Metal- and phosphorus-containing compounds are highly effective in opposed flow diffusion flames, not effective in co-flow flames or SPGG experiments
- Reasons being examined in FY2001

NEW FLAME SUPPRESSION CHEMICALS

- 4 Tropodegradable Bromocarbons being worked with AAWG
 - 1-bromo-3,3,3-trifluoropropene
 - 2-bromo-3,3,3-trifluoropropene
 - 4-bromo-3,3,4,4-tetrafluorobutene
 - 2-bromo-3,3,4,4,4-pentafluorobutene

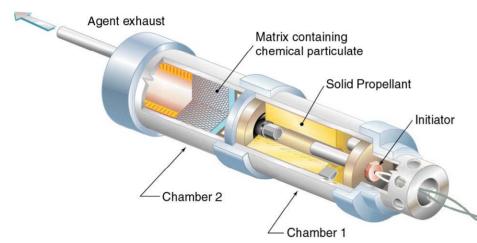
 $CF_{3}CH=CHBr$ $CF_{3}CBr=CH_{2}$ $CF_{2}BrCF_{2}CH=CH_{2}$ $CF_{3}CF_{2}CBr=CH_{2}$

- Cup burner values < 4 mole percent (≈ halon 1301)
- No effect on rats 5 % for 30 minutes; negative Ames test, etc.
- Cardiotoxicity LOAEL of second propene: <1 %
- Atmospheric lifetimes of several days
- Boiling points: 34 °C 56 °C
- Searching for others with lower boiling points


SURVEY OF CHEMICAL FAMILIES

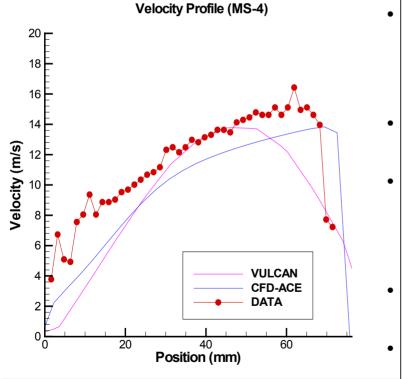
- Comprehensive review of the world of chemistry
- Most promising families:
 - N compounds: amines nitriles
 - P Compounds: *acids esters* nitriles halides
 - S Compounds: sulfides mercaptans sulfoxides
 - Metal Compounds: manganese tin
 - Halogenated Organics: alkenes (I) fluoroethers (Br,I)
- Substantial fluorination likely needed for low boiling points
- Screening started in FY2001

COMPLEXITY OF ENGINE NACELLE FIRE SUPPRESSION

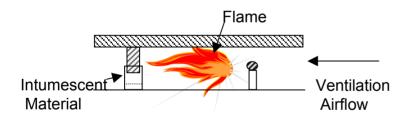

DISPERSION OF MID-BOILING SUPPRESSANTS AT LOW TEMPERATURE

- CF₃I has a flame suppression efficiency similar to halon 1301
- Halon 1301 (B.P -58 °C) flash vaporizes and distributes well, even at the lowest temperatures (*ca*. -40 °C) in in-flight aircraft
- CF₃I B.P. is -22 °C, and earlier research had indicated that its dispersion at low temperature might be problematic
- Aircraft engine nacelle simulator has been built to examine this and other higher boiling chemicals
- Initial results indicate heating will be needed

SOLID PROPELLANT GAS GENERATORS

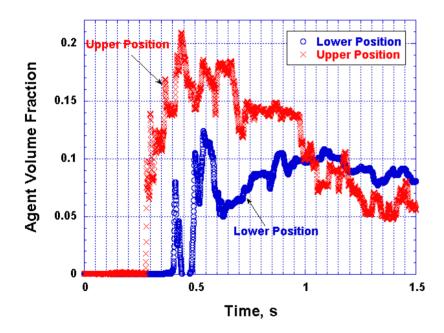


- Novel high-N fuels achieved 20 % reduction in effluent gas temperatures
- Less or different oxidizer will reduce combustion temperatures further
- Additional fuel formulations under development
- Odd results with chemically active agents (KI, KBr, K₂CO₃, Fe₂O₃, iron oxalate, decabromodiphenyl ether, ferrocene) added downstream
- Quantifying the agent mass reaching the flame and modifying the SPGG design to improve the agent delivery


FIRE SUPPRESSANT DYNAMICS IN ENGINE NACELLES

- Objective: validated computational fluid dynamic (CFD) model of suppressant flow, a fire, and fire extinguishment in cluttered environments
- Provide basis for optimizing the distribution of suppressants
- Baseline: CFD predictions compared with detailed measurements in a quarter-scale, smooth nacelle fixture under well-controlled conditions
- Experiments in cluttered nacelle mockup to begin soon
- Movement of aerosol agents and effects on flame to be added

USE OF AN INTUMESCENT COATING TO REDUCE ENGINE NACELLE AIR FLOW



- Coating on inside of nacelle
 responds to the impingement of fire
 heat by swelling (> x10), reducing
 the open area of the nacelle and
 thus air flow
 - weaken the fire due to oxygen starvation
 - reduce the mass of suppressant needed
 - lead to extinguishment by itself
- No effect in the absence of a fire
- Survey shows a wide range of candidate materials

CONCENTRATION MEASUREMENT FOR REAL-SCALE TESTS

- Fabricated portable version of Differential Infrared Agent Concentration Sensor (DIRRACS2): ca. 22 cm x 31 cm x 18 cm
- HFC-125 discharge tests carried out in a Bradley armored personnel carrier
- Concentration monitored near head height or waist height for an occupant of the vehicle
- Time resolution acceptable
- "Noise" dominated by turbulence of mixing

BENEFIT ASSESSMENT OF FIRE PROTECTION SYSTEM CHANGES

- Total cost of the system minus the cost savings provided by the system (extinguishant effectiveness and aircraft saved)
- Example: C-17 aircraft halon 1301 vs. equal performance HFC-125
 - Results have sizable uncertainties
 - Fleet-wide (20-year) cost of ownership of the halon 1301 systems: \approx \$37 M
 - Equivalent cost of ownership for a proposed HFC-125 system: \approx \$43 M
 - Each is ≈ 0.1 % of the total life cycle cost of the aircraft
 - Benefits greatly outweigh cost; difference in total cost of the two systems is modest compared to the total cost of owning and operating the aircraft
- Next: extend methodology to nacelles in the F/A-18 E/F and a rotary wing platform and one dry bay application

Environmental Research

FY2002 PROGRAM

- Continuing evaluation of chemical families
 - RFP for new ideas likely in winter, 2001
- Continuing development of dispersion model
- Complete work on powder panels (dry bay application)
- Planning for limited real-scale fire experiments

NEXT GENERATION FIRE SUPPRESSION TECHNOLOGY PROGRAM [NGP] www.bfrl.nist.gov/866/NGP

Richard G. Gann, Ph.D. Phone: (301) 975-6866 e-mail: rggann@nist.gov