

Arc Fault Circuit Breaker Development and Implementation

25 October, 2001

By

Robert Pappas Federal Aviation Administration Charles Singer Naval Air Systems Command

Outline

- AFCB Program Background
- Pros/Cons of AFCB Installation
- AFCB Implementation Considerations
- Present & Future Arc Fault Protection and Diagnostics Options

AFCB Program Background

- Development contracts awarded Dec 1999
- Eaton Corporation
 - 24 month contract
 - Adapted from 60 Hz Household AFCB
- Hendry Telephone Company
 - 33 month contract
 - Partnered with Texas Instruments/Klixon
 - Adapted From 48 volt DC Arc Detection Patent

Eaton

AFCB Program Background

- Deliver 20 MS24571 or smaller AFCB prototypes tested to minimum safety of flight requirements
 - Temperature (-20°C to 71°C)
 - Altitude (0-45,000 feet)
 - Vibration (MIL-STD-810/DO-160)
 - EMI (MIL-STD-461D/DO-160)
 - Electrical (MIL-STD-704A/DO-160)


AFCB Program Status

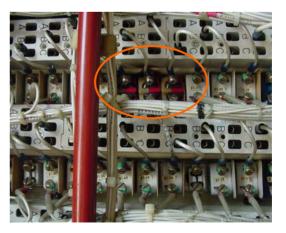
- Eaton Corporation
 - 20 units delivered for flight testing on FAA Boeing 727 and Navy Boeing C-9
 - Navy flight testing began 24 August, 2001
 - FAA flight testing began 10 September, 2001
- Hendry Telephone Company/Texas Instruments
 - Safety of flight laboratory tests February 2002
 - Flight test in April 2002

AFCB Development Eaton Corporation

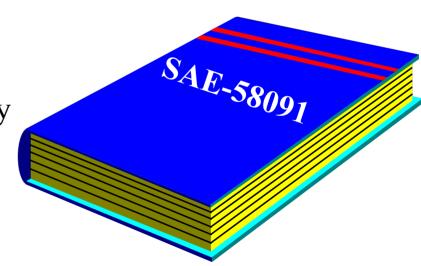
AFCB Development

Hendry/Texas Instruments

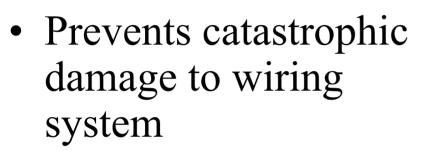
AFCB Installation on Navy C-9 Aircraft (VR-56)



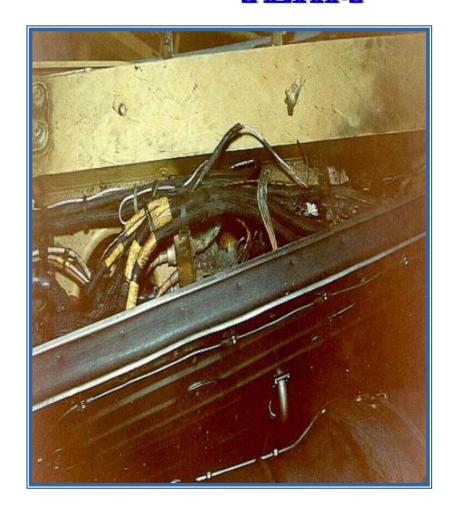
First Navy Flight of Eaton AFCB on August 24, 2001



SAE-8B1 AFCB Specification



- Society of Automotive Engineers Aeronautical Division
 - Protective Device committee (SAE-AE8B1)
 - Updating SAE 58091 (Formerly MIL-C-5809) Circuit Breaker
 Specification for Thermal and Arc fault protection
 - Preliminary Spec Available
 September 2001
 - Finalized January 2002



Pro's of Installing AFCB's into Circuits

- Reduce arc energy for starting fires
- Identifies circuits on which arc faults are occurring
- Actively monitors circuits

Con's of Installing AFCB's

- Determining Overload vs. Arc Fault vs. Nuisance Trip
- Assurance of AFCB
 Functionality
- Additional wire maintenance due to potential increases in trip rates from interconnect system degradation
- Post trip troubleshooting, determining location of arc fault

Implementing

Considerations/Approaches

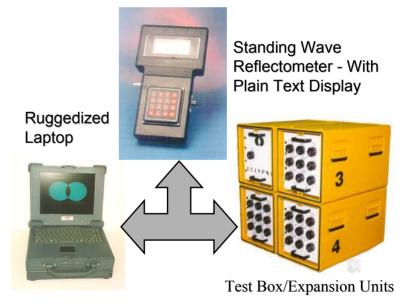
- Fire and Smoke Incident Data
- Maintenance Data
- Reliability Data
- **Risk Analysis**
- Wiring Zones
 - SWAMP
 - Environmental Conditions
 - High Maintenance Areas
 - Avionics bay
 - Passenger Cabins
 - Cargo compartments

Implementing Considerations/Approaches

NAVAL

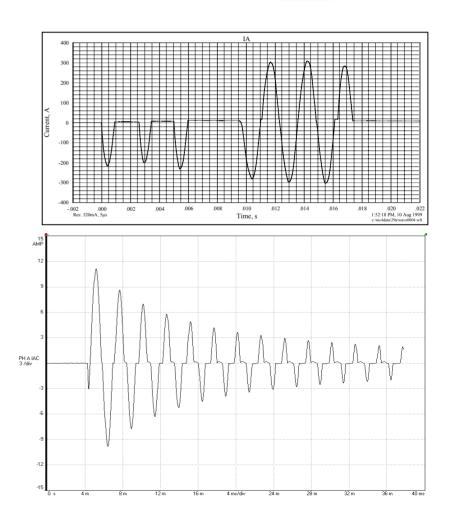
Connected Equipment

- Non-Flight Critical Equipment
 - Passenger/cargo
- Flight Critical With Redundancy
- Emergency Flight Loads
- Risk Analysis
 - Functional/Physical
 - Intra-system hazards


Trouble Shooting Arcs

- Off Board Aircraft Wiring Tester
 - VOM
 - TDR/FDR/SWR
- On-board Wiring Diagnostics
 - Smart Wire

TEST SYSTEMS (MIL-STD-810 EXPLOSIVE ENVIRONMENT)



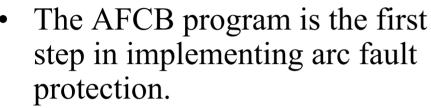
Preventing Nuisance Trips

- Determining arc fault detection circuitry health
 - Off Board Tester
 - Internal AFCB Tester
 - Equipment Operation
- Qualification testing
- Load compatibility tests

Future Arc Fault Protection

- Miniaturized singlephase AFCB
- 28 Volt DC AFCB
- Three-Phase AFCB
- Contactors
- Generator Control Units

Advanced Diagnostic and Protection Features


- AFCB Operational Test
 Internal Built in Test (BIT) vs. External tester
- Arc Fault Locator
 - Internal versus external
- Circuit breaker communications
- Wire Protection
 - Coordination
 - Arc fault and thermal trip coordination
 - Multiple Protection Devices
 - AFCB, motor contactors, Bus tie contactors, generator control units

Conclusion

- System level planning essential to a successful transition to AFCBs and maximizing AFCB benefits.
- Efficient post-trip troubleshooting is essential for maintenance and operation of AFCB equipped aircraft.

Implementing AFCB in various circuit protection devices is in its infancy.