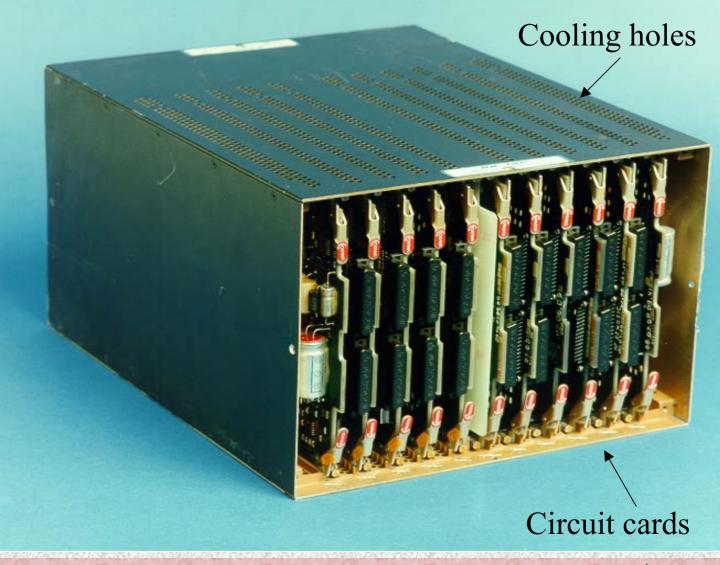
FAA Flammability Certification of Electrical and Electronic Components International Aircraft Fire and Cabin Safety Research Conference October 22-25, 2001

Kendall D. Hester James M. Peterson Boeing Commercial Airplanes Group

Boeing Goals

- Comply with Regulatory Requirements
- Continuously Improve Safety of Flight
- Utilize Supplementary Internal and Industry Standards
- Improve procurement cost of equipment
 - Utilize industry data
 - Use engineering skills and experience
 - Work together with our suppliers
 - Eliminate unnecessary and non-value added processes and testing



Typical Elements of Electronic Equipment

- Electric Wire
- Printed Wiring Boards (PWBs)
- Cathode Ray Tubes
- Liquid Crystal Displays
- Transformers
- Switches
- Small Components (Diodes, Resistors, etc.)

Typical Electronic Equipment in a Jet Transport

BOEING® Page 4

Typical Printed Wiring Assembly

History of Electronic Equipment Usage in Commercial Transport Airplanes

- In the early years, electronic equipment consisted primarily of simple avionics in the flight deck and E/E bay
- Later, additional electronic units and sensors were added all over the airplane
- In recent years, there has been a great expansion of in-flight passenger entertainment systems, up to Internet access on seat-powered laptop computers

Electronic Equipment Design Criteria

- Military specifications used to control the fire properties of electronic equipment.
- Many of these military specifications have been recently canceled.
 - Example older requirement Printed Wiring Board material shall be epoxy/glass (Type GF) or other material with equivalent or better temperature, arc, and flame resistance, in accordance with MIL-P-13949.

FAA Flammability Requirements

- FAA regulations were changed in 1967, and new flammability requirements and test methods were added
 - New standards for side-walls, ceilings, etc.
- Small parts did not have to be tested
 - Except for small parts (such as small electrical parts) that would not contribute significantly to the propagation of a fire...

Page 8

BOEING

• Electronic components were viewed as "small parts"

- In the 1960's, there were only a few electronic components in the EE bay and flight deck.
 - Only materials compliant to the Military Standards (self-extinguishing) were used
- Today significantly more electrical/electronic components are used
- Military production standards have been canceled and replaced by industry production standards

- Aerospace industry standards require either
 - IPC 4101 flammability test be done on laminates making up a PWB before board is assembled or
 - UL 94 V0 test on the finished PWB
 - No industry requirement for 12-sec vertical
- FAA clarified that regulatory testing of electronic components requires
 - FAR tests 12-sec vertical Bunsen burner test (e.g., printed wiring boards, PWBs)
 - or approved alternatives

BOEING[®] Page 10

- Aerospace PWBs built to industry standards always pass FAA test with high margin
- FAA receptive to "equivalent safety finding" to approve PWBs meeting industry standards without requiring FAR 12-sec vertical test
- FAR 21, § 21.21(b)(1)
 - <u>any airworthiness provisions not complied with</u> <u>are compensated for by factors that provide an</u> <u>equivalent level of safety</u> ...

Equivalent Safety Finding

- Plan for establishing equivalent safety finding
 - Analysis of IPC, UL, and FAR test procedures
 - Analysis of the sample testing by suppliers (i.e. the on-going process control)
 - Test a representative sample of IPC and UL compliant
 PWB materials using the FAR 12-sec vertical test
 - Bare printed wiring board laminates
 - Complete multilayer printed wiring boards
 - Printed wiring assemblies with conformal coat

Page 12

BOEING®

- When an "equivalent safety finding" is granted, PWBs will be FAA-approved *by process control*
- Showing compliance by process control is a significant need for electronics
 - Electronics are in constant *redesign*
 - Testing by part number is inefficient and extremely expensive in the long run
 - Continuous process control provides better assurance
 - As opposed the current one time test
 - Most electronics redesign does not change materials

BOEING[®] Page 13

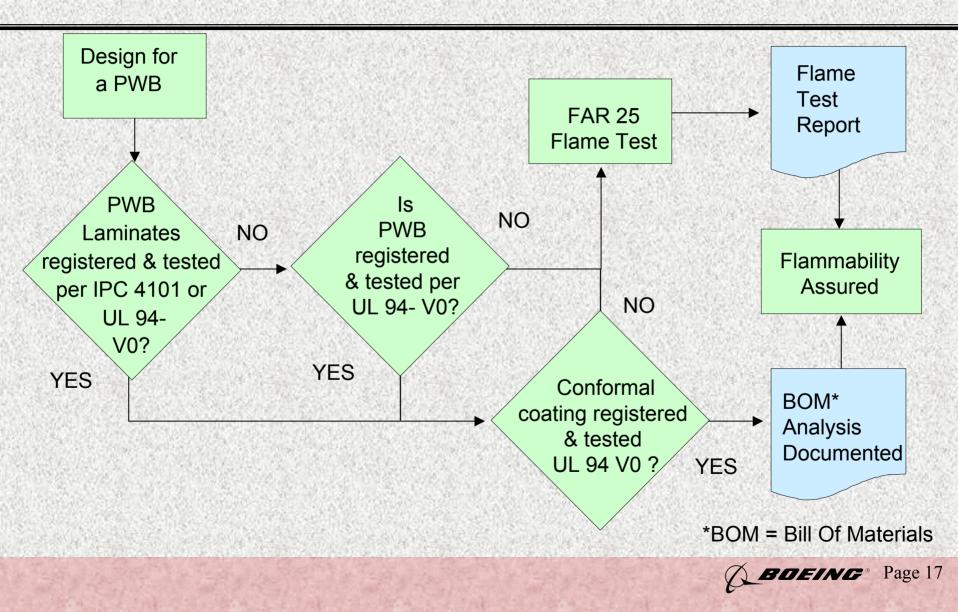
- Re-layout of PWBs and microcircuits
- Software updates

Reasons for Electronic Redesign

- Airline requests for increased functionality
 - More features and options
 - In-flight entertainment
- Product improvements
 - Updates, problem resolution, production improvements
- Component obsolescence
 - Cancellation of the military specifications
 - Commercial components have a shorter production life due to high volume users

PWBs are the Most Frequently Changed Item

Typical Materials	Redesign Impacts
Small electrical components:	Frequently change
Microcircuits, resistors, capacitors, switches, etc.	but small are parts
Flexi-cables, small wire cables	Seldom change
Displays	Seldom change
Gaskets	Seldom change
Connectors	Seldom change
Sheet metal, screws, etc.	No impact on the
	flammability analysis
Printed wiring boards	Frequently change



Process Control Methods

- Boeing is incorporating process control methods for design and manufacturing
 - DO-178 (Example of Software process control)
 - DO-254 (Example of hardware process control)
 - ISO-9000 (Example of quality by process control)
 - AS-9000 (Example of quality by process control)
- Process control provides
 - Improved quality, reliability, and performance
 - Lower costs
 - Shorter design cycle times

Use of Industry Standards

Conclusions

- The FAA requires data for flammability certification of electronics before E/E components can be delivered on airplanes.
- Currently, all affected parts must be tested to 12-sec vertical for flammability certification
- Suppliers of E/E equipment need to put a priority on acquiring acceptable data far upstream of delivery.

Conclusions (cont.)

- An alternative method for flammability certification is urgently needed
- Boeing is working with the FAA to establish an equivalent safety finding to enable certification by *process control* using existing industry standard test processes instead of testing each PWB

