Air Ducting Requirements and Design

Doug Maben Boeing Environmental Control Systems Design 10/25/01

Air Ducting Requirements and Design Applicable Systems

Low Pressure Systems inside the pressure vessel

- Conditioned Air Distribution
- Recirculated Air
- Lavatory and Galley Vent
- Electrical/Electronic Equipment Cooling
- Individual Air (Gasper)
- Cargo Heat

Air Ducting Requirements and Design Low Pressure System Requirements

Thermal

• -65 to 200°F (-54 to 93°C)

Operating Pressure

-1.0 to +1.0 psig (-703 to 703 kg/m²)

Thermal Isolation

 Addition of insulation to prevent condensation and improve cooling performance

Air Ducting Requirements and Design Low Pressure System Requirements

Weight

- Airplane performance is directly impacted by weight and is therefore kept to a minimum
- A typical 9" (22.9 cm) diameter duct 8 feet (2.4 m) long might weigh only 2.8 lbs (1.3 kg)

Air Ducting Requirements and Design Low Pressure System Requirements

Durability

- Subject to abuse during shipping, handling, installation and airline maintenance
- Exposed to thermal and pressure cycles
- Inner walls are exposed to high velocity air
- Clamping loads at duct joints and supports
- Flight induced loads

Air Ducting Requirements and Design Low Pressure Ducting Requirements

Flammability

- FAR 28.853, Duct materials subjected to 12 second vertical burn test (Bunsen burner)
 - Burn length not to exceed 8 inches
 - Specimen extinguish within 15 seconds
 - Drippings extinguish within an average of 5 seconds
- Current duct materials exceed this requirement

Composites

Thermoset construction
 Epoxy, Phenolic or Polyester reinforced with Kevlar or fiberglass fabric

 Weight and durability requirements as well as part complexity have driven the use of composites

Composites

 Thermoset construction with negative pressure stiffening rings

 Rigid, closed cell foam construction

Thermoplastics

- Configuration determines the material and process
 - Extrusion
 - Rotational mold
 - Injection mold

Metallic Ducting

Aluminum Tube

Hoses / Sleeves / Elastomerics

- AS (Aerospace Standard) and Boeing designed products
- Fiberglass reinforced silicone or neoprene with nylon or Ultem helix
- Nylon reinforced polyurethane with nylon helix

Air Ducting Requirements and Design Future Trends

Materials

Preimpregnated sheet composites

Thermoplastics

Aluminum tube

Thermoplastics

Processes

 Expendable mandrel lay-up

Permanent mandrel

Lay-up parts

Air Ducting Requirements and Design Producibility

Issues

- Many parts are only producible using one process
- Tooling investment is significant
- Process or material changes are expensive once tooling has been fabricated
- History has shown that fabrication and material changes must be proven by test and in-service to avoid significant performance issues

Air Ducting Requirements and Design Summary

- Multiple requirements affect the design and material decision
- Fabrication process is determined by material, quantity, environment, performance selection
- Part cost varies significantly depending on material and process
- Material or process changes are expensive due to tooling investments

