

Future Trends in Fire Safety Research -a Manufacturer's View-

J-F. Petit

Contents

- Introduction
- Areas of Research
- Materials in Hidden Areas
- Smoke/Fire Detection Systems
- Halon Replacement
- Alternative to Oxygen on Board
- Evolution of Airbus Own FST Specifications
- Conclusion

A/C Size / Regulation Development

Airbus FST Specifications

- Introduced 1979 as ATS 1000
- Superseded in 1994 by ABD0031
- All Airbus Programs
- Specific Smoke & Toxicity Criteria
- All Non-Metallic Components in the Pressurized Section

Airbus FST Specifications

Floor panels and non-metallic structural parts

Airbus FST Specifications

Accidents per Mill. FH

These efforts in fire safety have contributed to a significant reduction of the number of accidents.

BUT

Further effort in fire safety research is required in order to keep reducing the accident risk.

Areas of Research

Materials in Hidden Areas

State of the Art

- Hidden Areas not specifically identified in Regulations (compartment interiors & cargo or baggage compartments)
- Airbus FST Specification applies to the Pressurized Section of the Fuselage (incl. Hidden Areas)
- No In-Service Report on Fire Propagation in Hidden Areas of Airbus a/c

Materials in Hidden Areas

Identified Issues

- Hidden Areas are Non-Accessible Areas
- Potential for Non-readily identified Fire Hazard
- Materials must not propagate Fire
- Fire Test Criteria must address the potential Threat

Materials in Hidden Areas

Research Objectives

- Identify effective Contribution of Materials to Fire Spread
- Evaluate Fire Test Methods & Criteria vs Potential Fire Threat
- Airbus contribution to
 - IAMFTWG sub working group on "Hidden Areas"
 - DGAC/JAA Research Program on "Hidden Fires"
 - German National Research Program "TIPPS"

State of the Art

Regulation requires that warning be provided within 60s after the start of a fire

All fire sensors in the fuselage are smoke detectors (ionisation- and photoelectric sensors)

Smoke Detector and Halon Nozzle Arrangement in Cargo Compartment

Identified Issues

- False alarm rate is high (due to dust, cargo condensation, ...)
- A/c turnbacks, emergency landings, evacuations, Halon discharge, AOG,
- Detection of smoldering fires in electronic bays is not possible with today's systems

Research Objectives

- Suppression system compatible fire and smoke detection for cargo compartments with drastically reduced false alarm rate
- Technology for "electrical wire overheat" detection
- Means for visualisation of status inside cargo compartment

Fire Detection: Technology

Particle Sensing

- Photoelectric Sensor
- Laser Particle Sensor
- Light Attenuation Sensor
- Ionisation Sensor

Gas Sensing

- •Semicond. Metal Oxide Sensor
- Infra Red Sensor

Temperature Sensing

- Metallic Resistors
- Thermistors
- •Silicon Semicond. Temp. Sensor
- Thermoelectrical Devices
- Piezoelectrical Devices
- •Temperature Radiation Sensing

State of the Art

- Since more than 40 years Halons are used successfully for fire fighting
- Excellent compromise between extinguishing efficiency and toxicity
- In all modern aircraft Halons are used for fire fighting applications

W Halon Replacement

Installation of Halon Cargo Fire Extinguishers

Identified Issues

- Halons belong to the CFCs which deplete the stratospheric ozone layer
- Montreal Protocol has banned Halon production and use since January 1994
- A suitable alternative is not available for aviation, due to special requirements like:
 - Toxicity
 - Maintaining visibility
 - Necessary extinguishing mass/volume

Research Objectives

- Environment friendly (non halon) fire extinguishing system that :
 - provides the same level of safety
 - creates limited disadvantages vs Halon
 - is fully compatible with the a/c environment
- Airbus contribution to
 - European research program "FIREDETEX"
 - International Systems Fire Protection WG

Alternative to Oxygen on Board

State of the Art

- Oxygen on Board : Gaseous or Chemical Generators
- Regulations require significant Quantity of Gaseous Oxygen for certain Operational Scenarios
- Significant Safety Precautions are required for Oxygen System Installation

Alternative to Oxygen on Board

Identified Issues

- Oxygen can contribute to Fire Development (eg B737 USAir Los Angeles 1991)
- Servicing or Maintenance Incidents have been reported
 (eg B727 DELTA Salt Lake City 1989)

Alternative to Oxygen on Board

Research Objectives

- To reduce Quantity of Gaseous Oxygen or Chemical Generators on board
- To reduce the Risk of inadvertent Release of Oxygen
- Solutions under Investigation:
 - OBOGS "On-Top" to refill on-board O2 Cylinders
 - OBOGS "On-Line" to generate O2 on- demand

Evolution of Airbus FST Directive

Considering

- Upcoming Rule on Insulation Materials to be considered
- Introduction of non-metallic structural parts in the pressurized Section
- Increase of electrical Systems (IFE, Passenger Service...)
- Extended use of Optical Fibers

- Further effort in fire safety research is required in order to keep reducing the risk of accident.
- Manufacturers are committed to play a Major Role in current and future Fire Safety Research Programs
- Fire Safety Research must also consider industrial Feasibility and impact on aircraft Performance