Advanced Fire Detection in Cargo Compartments

Thomas Cleary

Building and Fire Research Laboratory National Institute of Standards and Technology October 23, 2001

Work Sponsored by FAA/NASA

Motivation

- Cargo compartment detection systems have historically experienced a "high" false alarm rate
- New detection/sensing technologies developed for other applications may be helpful

Sensing Technologies

- Particulate Smoke
- Combustion Gases
- Temperature Rise
- Combinations of the Above

• Others - Radiant Emission

Objectives

- Improved immunity to false alarms
- Assured detection of real fire events
- Compartment monitoring

Approach

- Laboratory testing of fire and nuisance source scenarios
- Characterize detector environment during exposures
- Analyze data for improved detection

Schematic of FE/DE and Test Section Arrangement

Fire and Nuisance Conditions in Cargo Compartments

- Flaming Fire
 - simulate small
 hydrocarbon liquid
 spill
- Smoldering Fire
 - Match conditions of smoke concentration found in FAA test fires
- Low Smoke Fire
 - alcohol soaked fabric

- Pyrolyzing mixed plastics plaque
- Dust exposure
- Non-volatile liquid mist (Oil)
- Condensed water vapor cloud
- *Temperature gradient between detector and ambient*
- Pyrolyzing wood smoke

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Fire and Nuisance Source Scenarios

The selection of scenarios was guided by a desire to cover the range of potential fire and nuisance alarm scenarios progressing to a point were current aircraft detectors would alarm. There is no basis for these scenarios from analysis for aircraft fire data, nor service difficulty reports addressing false alarms.

Sensor Signals Recorded During the Tests

- Smoke particulates
 - photoelectric (light scattering), extinction measurement, ionization
- Combustion gases
 carbon monoxide, carbon dioxide, water,
- Temperature
 - thermistor, thermocouple
- Aircraft Detector Alarm

Flaming Fire Scenario

- Emulate a liquid pool fire source located in a cargo compartment.
- Fixed airflow with ramping temperature and smoke concentration
- Black smoke from the propene smoke generator.

Flaming Fire Scenario

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

NUST National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce **Cross Correlation Equation**

$$\langle A \bullet B \rangle (t_o, \tau_c, \tau_s) = \left(\frac{\tau_c}{\tau_s} \right)^{-1} \left(\frac{tc}{ts-1} \right) A(t_n) \bullet B(t_n)$$

Where A and B are the sensor values of interest, τ_0 is the present time, τ_n is the time n scans in the past, τ_c is the averaging time and τ_s is the scan interval. Heskestad and Newman, *Fire Safety Journal*, **18**, 1992.

Signal Cross Correlation - Flaming Fire Scenario

- THE RESEARCH IS ONLY

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

NIS

Low-Smoke Flaming Fire

- Ethanol-soaked polyester/cotton fabric circles 7 cm in diameter saturated with 5 cm³ of liquid
- Ethanol is ignited, burns, then ignites fabric
- early low-smoke transitioning to heavy smoke as fabric burns
- Example ignition of alcohol-soaked baggage

Ethanol-soaked Fabric Circles

NGST National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

NIST National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

RESF

Signal Cross Correlation - Low Smoke Scenario

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Smoldering Cotton Wicks

- Use Staged wick ignition device to provide rapidly increasing smoke concentration at test section
- 8 sets of 4 ignited in 12 s sequence

Smoldering Cotton Wicks

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Smoldering Cotton Wicks

NGST National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Signal Cross Correlation - Smoldering Scenario

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Pyrolyzing Mixed Plastics Plaque

- Mixed plastic pellets compressed into a plaque with an imbedded nichrome wire
- Current passed through wire to initial pyrolysis

Pyrolyzing Mixed Plastics Plaque

NGST National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Pyrolyzing Mixed Plastics Plaque

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Signal Cross Correlation - Pyrolyzing Plastics

NGST National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Arizona Test Dust Exposure

• Feed dust in at a constant rate

Arizona Test Dust Exposure

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Signal Cross Correlation - Arizona Test Dust

Nebulized Oil Mist

• Bank of medical nebulizers

Nebulized Oil Mist

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Signal Cross Correlation - Oil Mist

Signal Cross Correlation - High Humidity/Temp

Time to Cross Correlation = 1

Test	D1	D2	PE*T	PE*ION	PE*CO	PE*CO ₂	ION*T	ION*CO	ION*CO ₂	CO*T	CO*CO ₂	CO ₂ *T
	Alarm	Alarm	(s)	(s)	(s)	(s)	(s)	(s)	(s)	(s)	(s)	(s)
	(S)	(S)										
Flaming	54	-	51	42	69	44	59	86	46	114	60	50
Fire												
Low	86	-	71	78	94	61	29	96	30	87	35	27
Smoke Fire												
Wood	768	1160	773	774	812	833	-	-	-	-	-	-
Blocks												
Pyrolyze	66	88	87	44	63	95	-	90	99	-	-	-
Plastics												
Cotton	130	135	136	87	87	91	139	86	92	125	90	137
Wick												
Flaming	-	-	48	35	58	59	57	61	59	66	61	61
Plastics												
High	446	396	256	349	-	-	222	-	-	-	-	-
Humidity												
Oil Mist	121	173	-	58	-	-	-	-	-	-	-	-
Arizona	50	53	-	32	-	-	-	-	-	-	-	-
Test Dust												

Summary

- Plausible cargo compartment fire and nuisance sources were emulated in the FE/DE.
- Photoelectric and ionization smoke analog output signals gathered along with CO₂, CO and H₂0 gas concentrations and air temperature change

Summary Cont.

- Data suggests combinations of particulate and gas sensing
- Ambient concentrations of gases present in cargo compartments needs to be considered

