

A Review of Aircraft Fire Detection Technology

Presented

at Fire & Cabin Safety Research Conference 23 October 2001

by R. E Glaser S. K. Newlin R. G. Sparks

Fire Sensing - Methods

Optical Fire Detection

- Ultraviolet
- Infrared
- Visible

Ultra Violet (UV) Detector - Theory of Operation

- Senses UV radiation in 190 -240nm waveband - emitted from fire
- High energy photons cause UV tubes to conduct by emission of electrons from cathode
- High voltage field between cathode & anode causes the tube to conduct
- APPLICATIONS: Engine, APU and wheel well compartments

Single Channel Infrared Detector - Theory of Operation

- Detects peak hydrocarbon emissions at 4.3 µm (co₂ molecular oscillations)
- Flame flicker logic, alarms when fire is sensed
- APPLICATIONS: Engine, APU and wheel well compartments

Typical Hydrocarbon Fire Emission

FIGURE 1

Fire and Cabin Safety Research Conference 23 October 2001

7

Dual Band InfraRed (IR) Detector -Theory of Operation

- Dual wavelength detection technique using 4.4µm (thermopile) & 0.9µm (photodiode)
- Dual bank logic enhances false
 alarm immunity
- APPLICATIONS: Fire and Explosion Detection Dry Bay Compartments

Visible Flame Detection

- Cadmium sulfide photo resistors
- Sees red content in flame emission
- Simple / low cost
- APPLICATIONS: Engine, APU and wheel well compartments

CdS Optical Flame Detector

- CdS photocells sensitive over range from 0.4 0.8 microns.
- False alarm immunity and flame discrimination gained from dual wavelength bands.
- Ratio of Red (0.75 μm) to Green (0.55 μm) light intensities.
- Mostly Red = "Flame"
- Mostly Green = "Other"

Thermal Fire Detection

- Thermistor
- Discrete
 - Continuous Eutectic
 - Spot Thermal Switches
- Pneumatic

Thermistor - Continuous Detector

- Solid state
- Electronic monitoring required
- Precision Analog thermal measurement
- APPLICATIONS: Engine, APU, wheel well compartments

Operating Characteristics

- Thermal Detection Mechanism Convection Heat Transfer
 - Decreasing Resistance
- Averaging Characteristic
 - Operate temp decreases as length heated increases
 - Tolerant of local hot-spots
- TSO C11e Approved
 - 5 sec response to "TSO flame"
 - 1100°C 150 mm (6 in) dia. Flame

0%

Fire and Cabin Safety Research Conference 23 October 2001

% FLEMENT LENGTH HEATED

100%

Discrete "Overheat" Detection

Discrete Continuous Sensing Element

- Solid state eutectic salt
- Step change in impedance when salt melts
- Temperature alarm set-points

 180°, 255°, 310°, 400°, 460°, 575°, 765°, 900°, 1050°F
- APPLICATIONS: Engine, APU wheel well and bleed air duct leak detection

Pneumatic Thermal Detector

- Convection heat transfer
- Pneumatic pressure increases and closes pressure switch contacts.

APD Section View

1. Connector pins

- 2. Resistor (optional)
- 3. Electrical contact pin
- 4. Alarm switch (normally open)
- 5. Low pressure switch (normally closed)6. Helium gas
- 7. Transponder housing
- 8. Manifold/capillary tubes
- 9. Hydride (hydrogen)core
- 10. Sensor tube
 - 11. Protective end cap

Pneumatic Thermal Detector

- Averaging and discrete alarm output temperatures
- Stand alone detector
- APPLICATIONS: Engine, APU and wheel well compartments

Smoke Detection

- Photo Electric Type
- Ionization Type

Kidde Aerospace

Photoelectric Smoke Detector

- Collimated light source
 provides excitation beam
- Smoke particles scatter light
- Photodetector detects scattered light from smoke particulates
- APPLICATIONS: Cargo Bays, EE Bays Lavatories, other remote zones

Ionization Smoke Detector

 \cdot Am^{241} emits $\alpha\,$ particles which ionize smoke.

•lonized smoke particles attracted to charged plates.

•Resulting current flow detected as alarm signature.

Future Trends

- Flame and smoke imaging using visible and IR CCD's
- Fiber optic thermal sensors
- Fiber optic flame emission viewing
- Multi fire signature smart logic
 - UV / IR
 - Smoke / Thermal / P.O.C.
- TDR event location
- Particle size discriminating smoke detection
- Engine and fire detection self health monitoring using thermal detection

Closing Thoughts

- All detection systems have strengths and weaknesses.
- Up-front investment in robust installation design and later on system preventative maintenance are essential.
- Multi-parameter smart logic has the greatest potential to eliminate nuisance alarms.
- Designers must be extremely vigilant to insure that above all the detection system always detects a real fire.