The Use of Novel Dimension Reduction Optical Fiber Arrays for Hyperspectral Imaging in Flames

Rosemarie C. Chinni, Maria V. Schiza, S. Michael Angel*

 *corresponding author: University of South Carolina, Department of Chemistry and Biochemistry, 631 Sumter St, Columbia, SC 29208, email: angel@mail.chem.sc.edu

Related Research

- *in-situ* measurement techniques
 ----LIBS
 ----REMPI
 ----Raman imaging
 ----fluorescence imaging
- applications related to flame characterization
 - introduction of polymer plaques with laser ablation
 - imaging temperature distributions in flame
 - --- "mapping" chemical (radical) species in flames

Develop Applications That are Generally Applicable to Combustion Measurements

application of these techniques to measure distribution of species and temperature in flame environments

Introduction of Insoluble Polymer Plaques in Flame

- flame retardants need to be introduced into the flame environment
- difficult for insoluble polymers
- soluble materials can be aspirated in the flame
- many commonly used flame retardants do not appreciably dissolve in most solvents
- use of laser ablation on polymer plaques for sample introduction into the flame

----very simple----only requires pulsed laser

Diagram of the Laser Ablation Set-up

Laser ablation was used to introduce polymer plaques containing XP-2000 Flame Retardant into a methane flame to measure the FR's effect on •OH concentrations in the Flame

Other Results on •OH Concentration

Sample	Decrease of •OH Concentration(%)
12% XP-2000, 88%PC-ABS	18.0 ± 6.6
30% XP-2000, 70% HIPS	12.8 ± 3.2
30% Et ₄ P ⁺ Br ⁻ , 70% ABS	28.7 ± 2.1
30% XP-1000, 70% ABS	29.1 ± 3.4

Recently, we have investigated the use of novel fiberoptic arrays for imaging Chemical Species and Temperature during Combustion Experiments

Purpose

• to test a new technique to measure the spatial distribution of temperature in a flame

• to investigate the ability of flame retardant chemicals to inhibit combustion using this technique

Imaging Sections of a Flame for Temperature Distribution

Introduction to Fiber-Optic Imaging

imaging using a CCD or ICCD detector provides spatial information
 single λ technique

the use of fiber optic array for simultaneously measuring emission spectra of multiple objects within an image was reported in 1986
 ——> commonly used for astronomical spectral imaging

Full Proximal End Image (A) and Cropped Distal End Image (B) of the Dimension Reduction Fiber Array

Scale = $100 \,\mu m$

ICCD chip (384 x 576 pixels)

Concept of Multi-Wavelength Single Frame Imaging

- Sample image projected onto proximal 2-D matrix of optical fibers
- Image waveguided to distal 1-D end
- 1-D end imaged with spectrograph
- Spatial, spectral, and temporal information acquired in a single-frame
- Computer program extracts encoded image

Analytical Applications of the 2-D to 1-D Dimension Reduction Fiber Array

- imaging plasmas generated by laser-induced breakdown spectroscopy (LIBS) on a lead sample
- Raman imaging
- chemical imaging and detection of CO_2/O_2
- imaging of lifetime based sensors

Complete Dimension Reduction Optical Fiber Array Next to a U.S. Quarter for Scale

Nelson, M. P. and Myrick, M. L., Rev. Sci. Instrum., 70(6), 2836-2844, 1999.

Details of Square-Fiber 2D to 1D Array (608 total fibers)

Full Proximal End Image (A) and Cropped Distal End Image (B) of the Dimension Reduction Fiber Array

and so on

Dimension Reduction

Advantages

- high spectral resolution
- simultaneous imaging at many different λ 's
- direct measurement of the development of the chemical concentration gradients, *in-situ*

Disadvantages

- increased complexity of system
- some loss of spatial resolution determined by the number of vertical pixel of the detector

Experimental Set-up

Flame Set-up with the Fiber Array

Reconstructed Image of the Letter "F"

ICCD Chip 384 x 576 pixels

Typical Spectral Image from ICCD Camera with Corresponding Fe Spectrum

Calculating Temperature using Emission Lines

- five images of Fe emission were taken for each sample type
- temperature was calculated by performing a Boltzmann Plot using the equation:

 $\ln(I_{kj}\lambda_{kj}/g_kA_{kj}) = -E_k/k_bT + \ln(N(T)/u(T))$

temperature was determined three different ways:
---using spectra integrated over entire image
---using spectra integrated from each of the ribbons on the 1-D side
---reconstructing 2-D images at each wavelength

Temperature Calculated after Binning the Entire Image

with flame retardant (HBCD)

without flame retardant

Trial 1	2087 K
Trial 2	2099 K
Trial 3	2102 K
Trial 4	2099 K
Trial 5	2016 K

Trial 1	2334 K
Trial 2	2306 K
Trial 3	2346 K
Trial 4	2279 K
Trial 5	2299 K

K

Average: 2081 ± 37 K	Average: 2299 ± 4 '
%RSD: 1.8	%RSD: 2.0

Comparison of Temperatures Calculated After Binning Each Fiber Ribbon Individually on the 1-D Side of the Fiber Array

With Flame Retardant (HBCD)

Average Temperature: 2148±149 K

Without Flame Retardant (no HBCD)

Average Temperature: 2315±107 K

With Flame Retardant (HBCD)

Average Temperature: 2148±149 K

5imaged area length (mm) 4-3-2-0-3 5 0 imaged area width (mm) 1800 2400 2200 2000 **Temperature (K)**

Without Flame Retardant (no HBCD)

Average Temperature: 2315±107 K

Fuel-Rich Flame

Lean Flame

Average Temperature: 2284±30 K

Average Temperature: 2035±26 K

Fuel-Rich Flame

Lean Flame

Average Temperature: 2369±30 K

Average Temperature: 2203±26 K

Comparison of the Wavelength Reconstruction to the Temperature Map

Single λ Reconstruction (374.83 nm)

2-D Temp Map of the Flame

Conclusions

- showed that laser ablation is useful for introduction of polymer plaques into a flame
- showed the ability to make temperature "maps" of a flame, simultaneously measuring all points in the imaged area of the flame
- The fiber-array is generally applicable to any spectral imaging technique

Future Work

- determine temperatures of other flame environments
- extend this to measure the lifetimes and concentrations of
 •OH, •CH and/or other radical species present in flame environments

Acknowledgments

\$ Federal Aviation Administration, FAA Grant # 95-G-030

Funding for fiber-array provided by DOE EPSCoR, Grant # EPS9630167

Dr. M.L. Myrick

