# JAA OCCUPANT SURVIVABILITY PROJECT ADVISORY GROUP

(ON BEHALF OF ICE ERGONOMICS LTD UK)



### ANTHROPOMETRIC RESEARCH STUDY

- ICE Ergonomics
- J Mark Porter Professor of Design Ergonomics, Loughborough University
- A Moody Professor of Academic Radiology, University of Nottingham



#### STUDY OBJECTIVES

- Gather appropriate anthropometric data
- Review values in existing regulations
- Review scope of existing regulations
- Consider physiological aspects of long term sitting



#### **Contract Award**

- Tenders invited in European Journal
- JAA review
- ICE Ergonomics awarded contract



#### **TIMETABLE**

- One year study
- Research Report published September 2001
- Available on ice.co.uk



### CURRENT REGULATIONS (AN64, UK ONLY)



FIGURE 1 MINIMUM DIMENSION REQUIRED BY PARAGRAPHS 4.1, 4.2 AND 4.3



### CURRENT REGULATIONS (AN64, UK only)

- Dimension A: The minimum distance between the back support cushion of a seat and the back of the seat or other fixed structure in front - 26 inches (660mm)
- Dimension B: The minimum distance between a seat and the seat or other fixed structure in front - 7 inches (178mm)
- Dimension C: The minimum vertically projected distance between seat rows or between a seat and any fixed structure forward of the seat - 3 inches (76mm)



#### STUDY METHODOLOGY

- Reviewed current practice in other forms of transport
- Passenger Survey
- Ergonomist Assessment
- Application of European and Worldwide Anthropometric Data



#### PASSENGER SURVEY

- >300 Passenger Questionnaires Analysed
- Greatest number of reported seat access problems associated with dimensions A, B and C
- Mobility problems experienced by 75% of respondents



#### **ANTHROPOMETRIC DATA**

- Mean male UK height increased by 1.7cm between 1981 and 1995!
  - Weight has increased more rapidly!
- 'Peoplesize 2000' used as main data source (believed to be the most comprehensive collection of static anthropometric information in the public domain)



### (95<sup>th</sup> AND 99<sup>th</sup> % MALE BUTTOCK-KNEE LENGTH

|          | 95 <sup>th</sup> % | 99 <sup>th</sup> % |
|----------|--------------------|--------------------|
| British  | 677mm<br>(26.7in)  | 704mm<br>(27.7in)  |
| European | 690mm<br>(27.2in)  | 715mm<br>(28.1)    |
| World    | 692mm<br>(27.2in)  | 722mm<br>(28.4)    |



#### PERCENTILE AN64 APPLICABILITY

|          | Equivalent<br>Percentile |  |
|----------|--------------------------|--|
| British  | 88                       |  |
| European | 77                       |  |
| World    | 80                       |  |



#### **BRACE POSITION**



FORWARD FACING PASSENGER BRACE POSITION



#### **AN64 DIMENSIONS B AND C**

- Dimension B: The minimum distance between a seat and the seat or other fixed structure in front - 7 inches (178mm)
- Dimension C: The minimum vertically projected distance between seat rows or between a seat and any fixed structure forward of the seat - 3 inches (76mm)



#### **SEAT CUSHION HEIGHT**

|         | 1 <sup>st</sup> %ile | 5 <sup>th</sup> %ile | 95 <sup>th</sup> %ile | 99 <sup>th</sup> %ile |
|---------|----------------------|----------------------|-----------------------|-----------------------|
| British | 351mm                | 356mm                | 499mm                 | 518mm                 |
|         | (13.8in)             | (14.0in)             | (19.6in)              | (20.4in)              |
| Europe  | 351mm                | 356mm                | 518mm                 | 536mm                 |
|         | (13.8)               | (14in)               | (20.4)                | (21.1)                |
| World   | 318mm                | 331mm                | 501mm                 | 520mm                 |
|         | (12.5)               | (13.0in              | (19.7in)              | (20.5in)              |



### 1<sup>st</sup> %ile WORLD FEMALE AND 98<sup>th</sup> % WORLD MALE





## 5th %ile WORLD FEMALE (LEFT) AND A 1st %ile WORLD FEMALE (RIGHT) SITTING IN TYPICAL CURRENT HEIGHT SEAT





### HEALTH ISSUES (DEEP VEIN THROMBOSIS)

- Identified during WWII
- Recent concerns
- Study guidelines



#### **DVT DATA COLLECTION PROBLEMS**

- By definition passengers are travelling and therefore collation of data is difficult.
- The disease is often difficult to diagnose clinically.
- Diagnostic tests may miss small clots.
- Presentation may be sometime after the travel episode.
- Asymptomatic disease will go unnoticed.



#### **PHYSIOLOGY**

- 1. Raised venous hydrostatic pressure
- 2. Hypoxia
- 3. Dehydration
- 4. Decreased venous blood flow
- 5. Vein trauma
- 6. Hypercoaguability
- 7. Smoking
- 8. Pre-existing cardiovascular problems
- 9. History of thromboembolic disease



#### **INCIDENCE**

- 1 in 1000 symptomatic
- 100 in 1000 asymptomatic
- Air travel related DVT approximately 10% of total



#### **PROTECTIVE MEASURES**

- Avoiding dehydration
- Exercise
- Aspirin?



### POTENTIAL FOR AIRCRAFT SEAT DESIGN

The intrinsic factors related to position while seated are:

- Stasis/Low Flow
- Hydrostatic Pressure



#### **NEED FOR FURTHER RESEARCH**

- DVT World Health Organisation Study
- Evacuation Studies to investigate mobility issues



#### REGULATORY POSITION

#### **JAA Specialist Group:**

- Consider regulatory action
- Specify needs for additional research

