# **Potential Injury Criteria for Sideways Facing Aircraft Seats**

**TNO** Automotive

Jack van Hoof

#### **Problem Formulation**

- Current aviation regulations only for forward facing seats (FARs 23.562, 25.562, 27.562, 29.562)
- Increasing use of sideways facing seats (business jets)
- Side impact loading
- Current regulations don't consider side impact loading

Need for injury criteria and tolerance levels for certification standards of sideways facing aircraft seats

#### **Presentation Overview**

- Automotive side impact
- Side impact regulations & tests
- Dummies
- Protective systems
- Injury criteria
- Required additional research
- Virtual testing
  - dummy models
  - human models
- Aviation simulations in MADYMO



#### **Automotive vs. Aviation Side Impact**

- Loading conditions
  - severity
  - duration
- Intrusion
- Contact with environment
- Restraints
- Protection

#### **Automotive Side Impact**

#### Technical

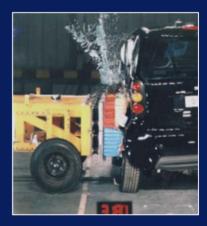
#### • complex

- loading conditions
- interactions
- occupant surrogates

#### Regulations

- different standards
  - ECE 95
  - FMVSS 214 & 201
- consumer programmes (NCAP)
- globalisation

#### Social


- EU annual road toll:
  - >40,000 fatalities
  - 1.6 million injured
- 160 billion Euro annual costs
- 50% fatalities caused by lateral loading

HANDICAPPE

Potential Injury Criteria for Sideways Facing Aircraft Seats

# **Automotive Side Impact Regulations** FMVSS 214

- US side impact barrier requirements introduced in the early 1990's.
- Metal honeycomb barrier positioned based on target vehicle wheelbase (56km/h)
- Front and Rear Seat US-SID Dummies
- Acceleration based injury criteria
- No head/neck criteria





# **Automotive Side Impact Regulations** ECE 95

- European side impact barrier requirements introduced in the early 1990's.
- Metal honeycomb barrier positioned based on front occupant Hpoint
- Front Seat EuroSID-1 dummy
- Deflection, force, acceleration, and viscous based injury criteria.
- No neck criteria



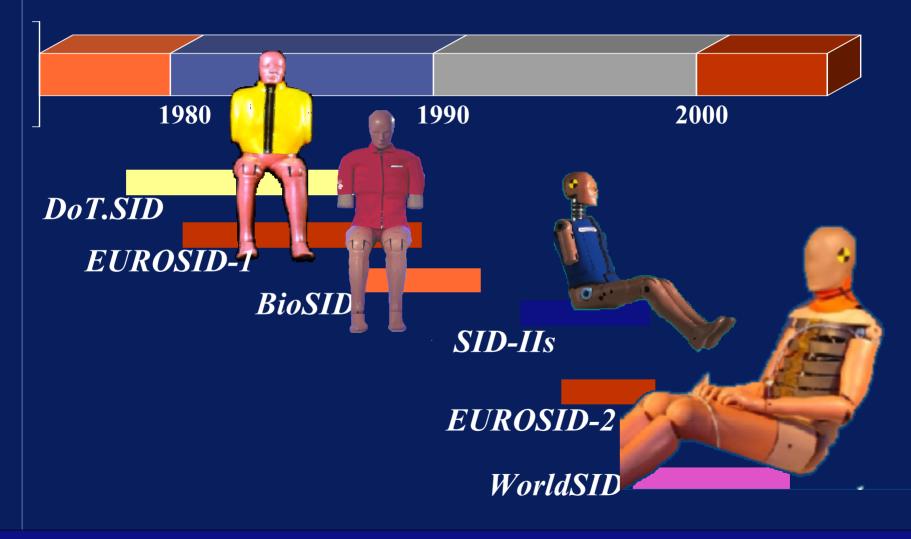
# **Automotive Side Impact Regulations** FMVSS 201

- 18 mph lateral pole test (254 mm diameter) with impact centered on head CG
- Front seat US SID/Hybrid III dummy
- HIC<sub>15</sub> criterion only
- Test only performed if upper interior head protection is fitted (ITS/Curtain bags), allowing head impactor tests to be conducted at lower energy levels

# **Automotive Side Impact Consumer Tests EuroNCAP**

- Developed for legislation by European Enhanced Vehicle-safety Committee (EEVC)
- MDB tests @ 50 kph
- Includes assessment of child safety
- Test tools comply with regulations
  - ECE 95 for mobile barrier and EUROSID-1 dummy
  - ECE 44 for child dummies








# Additional Automotive Side Impact Tests OOP Testing

- Performed in the past by NHTSA and IIHS to evaluate and rank the risk to occupants presented by side airbags
- Positions depend upon airbag configuration
  - Airbag Dependant
  - Occupant Dependent
  - Injury Dependent

#### **Side Impact Dummies**



Potential Injury Criteria for Sideways Facing Aircraft Seats

#### WorldSID Project

- Objective
  - development of new world-wide acceptable advanced side impact crash test dummy for improved injury risk assessment of car occupants in side impact
- Motivation
  - improved knowledge of human response in side impact results in improved dummy design and improved side impact protection
  - harmonisation will eliminate use of different dummies in different parts of the world and reduce costs

#### **Protective Systems**

• Vehicle structure



• Restraint systems





• Seat design

#### Side Impact Injury Criteria

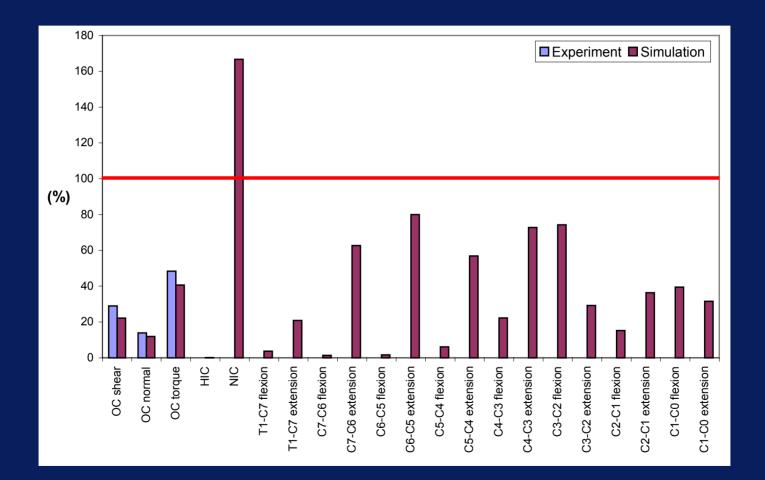
#### • Proposed by IIHS for USNCAP

| Injury Measure                     | ES-2 IARV | SID-IIs IARV |
|------------------------------------|-----------|--------------|
| HIC15                              | 700       | 779          |
| Res. Head accel. (G)               | 80        |              |
| Neck lateral bending moment        | 68        |              |
| ТТІ                                | 85        |              |
| Max. rib defl. (mm)                | 42        | 34           |
| Max rib defl. Rate (m/s)           | 8.2       |              |
| Max V*C (m/s)                      | 1         | 1            |
| Spine lateral accel. (max G, 3 ms) | 60        | 73           |
| Max. abdominal defl. (mm)          | 39        | 32           |
| Max. abdominal force (kN)          | 2.5       |              |
| Max. abdominal V*C (m/s)           | 1         | 1            |
| Pubic force (kN)                   | 10        | 4            |
| lliac force (kN)                   | 10        | 4            |
| Pelvis lateral accel. (G)          | 130       |              |

# **OOP Injury Criteria**

|                                        | Dummy               |                     |                 |         |
|----------------------------------------|---------------------|---------------------|-----------------|---------|
|                                        | Hybrid III          | Hybrid III          | Hybrid III      |         |
| Body Region/Injury Measure             | 3-Year-Old<br>Child | 6-Year-Old<br>Child | Small<br>Female | SID-IIs |
|                                        |                     |                     |                 |         |
| Upper Neck                             |                     |                     |                 |         |
| Lateral moment (Nm)                    | 30                  | 42                  | 67              | 67      |
| Twist moment (Nm)                      | 17                  | 24                  | 39              | 39      |
| Lower Neck                             |                     |                     |                 |         |
| Flexion moment (Nm)                    | 83                  | 119                 | 190             | 190     |
| Extension moment (Nm)                  | 34                  | 48                  | 77              | 77      |
| Lateral moment (Nm)                    | 60                  | 84                  | 134             | 134     |
| Twist moment (Nm)                      | 17                  | 24                  | 39              | 39      |
| Tension (N)                            | 1130                | 1490                | 2070            | 2070    |
| Compression (N)                        | 1380                | 1820                | 2520            | 2520    |
| Thorax                                 |                     |                     |                 |         |
| Spine acceleration (max g, 3 ms)       | 55                  | 60                  | _               | 73      |
| Abdomen                                |                     |                     |                 |         |
| Deflection (mm)                        | _                   | _                   | _               | 32      |
| Deflection rate (m/s)                  | _                   | _                   | —               | 8.2     |
| Pelvis                                 |                     |                     |                 |         |
| Pubic symphysis load (N)               |                     |                     | _               | 4000    |
| lliac load (N)                         |                     |                     |                 | 4000    |
|                                        |                     | —                   | —               | 4000    |
| Arm                                    |                     |                     |                 |         |
| Resultant bending moment, ulna (Nm)    | _                   | _                   | _               | 54      |
| Resultant bending moment, humerus (Nm) |                     |                     |                 | 130     |

Potential Injury Criteria for Sideways Facing Aircraft Seats


#### Whiplash Injury Criteria (1)

- FNIC (Mertz *et al.*, 1971; Lowne, 1996)
  - Occipital condyle (OC) loading
  - normal & shear force, torque
- NIC (Boström *et al.*, 1996)
  - relative motion between upper and lower neck
- IV-NIC (Panjabi et al., 1998)
  - Rotation between vertebrae
  - not measurable in current dummies
- Nij
  - load transferred through occipital condyles
  - neck axial force Fz (tension / compression)
  - flexion/extension moment My

 $NIC = a_{rel}(t)L + v_{rel}^2(t)$ 

 $Nij = \frac{F_z}{F_{zc}} + \frac{M_y}{M_{yc}}$ 

#### Whiplash Injury Criteria (2)



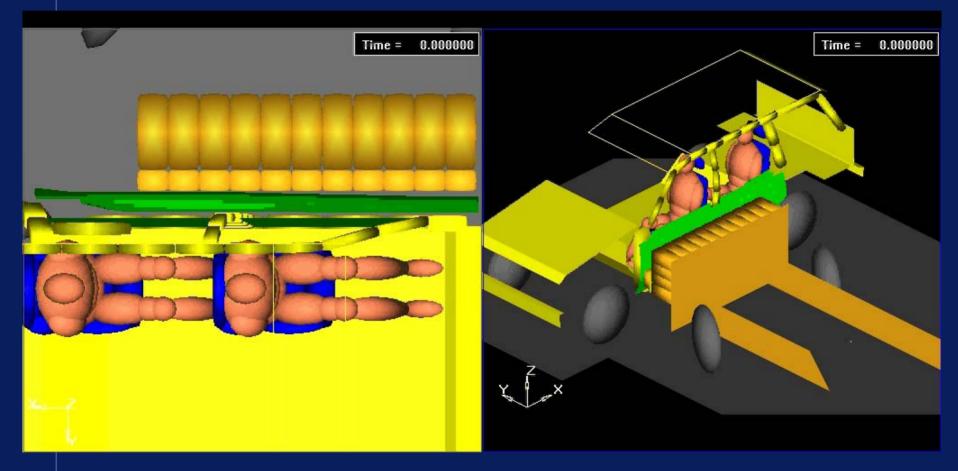
#### **Required additional research**

- Biomechanical testing
  - volunteers
  - PMHS
  - dummies
- Virtual testing

- dummy models
- human models

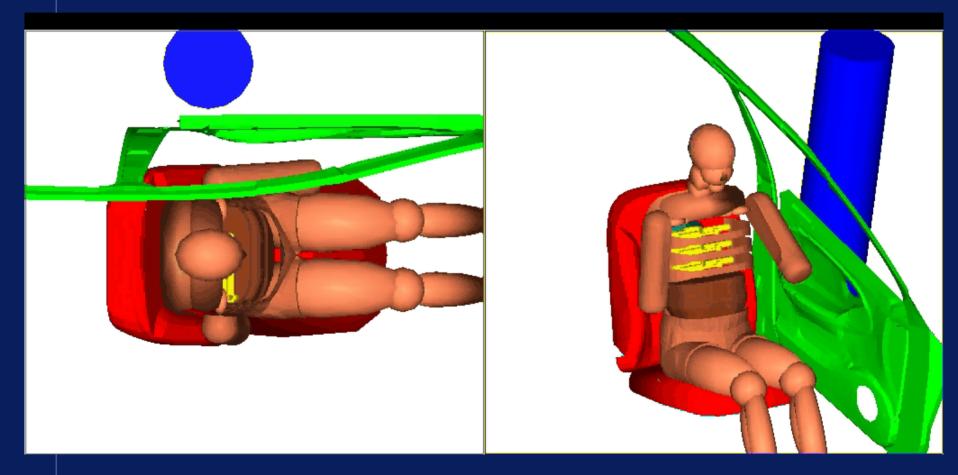
#### **MADYMO Dummy Models**




ELLIPSOID

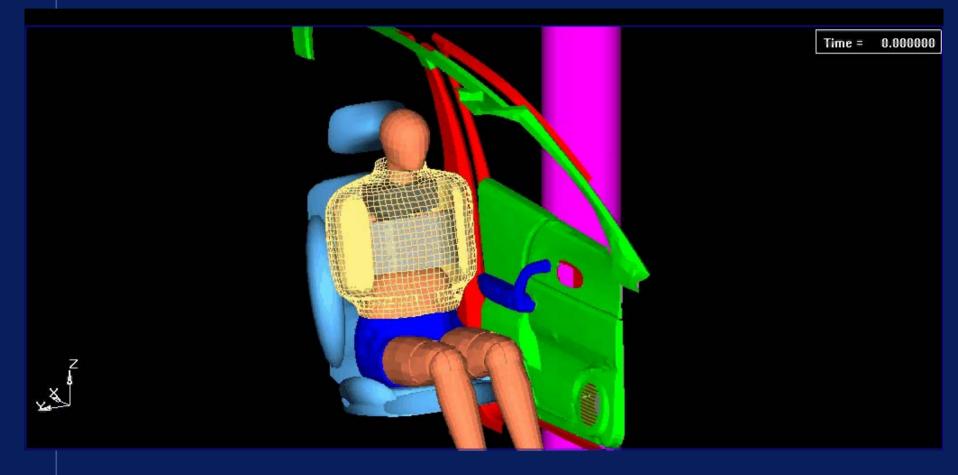
t

FACET

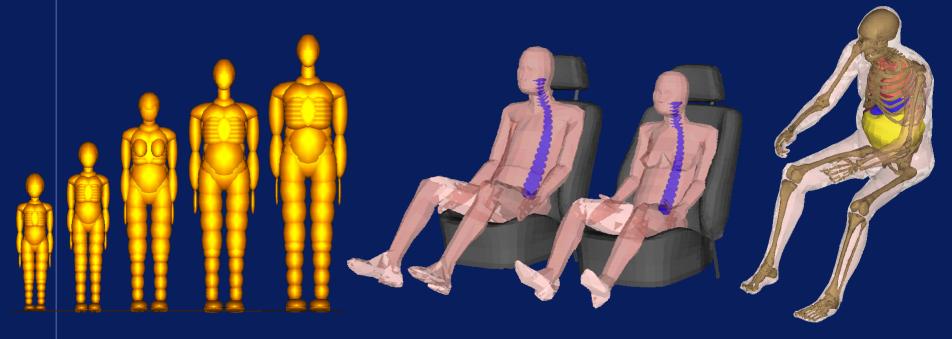

FEM

#### **MADYMO Dummy Models in Side Impact**




#### Potential Injury Criteria for Sideways Facing Aircraft Seats

#### **MADYMO Dummy Models in Side Impact**



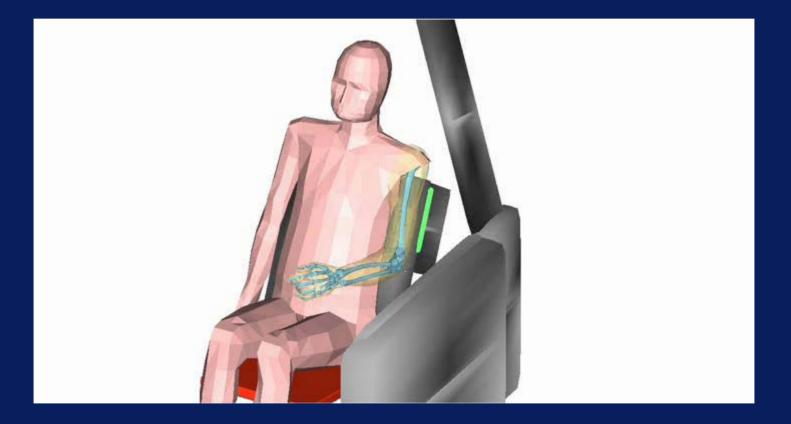

Potential Injury Criteria for Sideways Facing Aircraft Seats

#### **MADYMO Dummy Models in Side Impact**



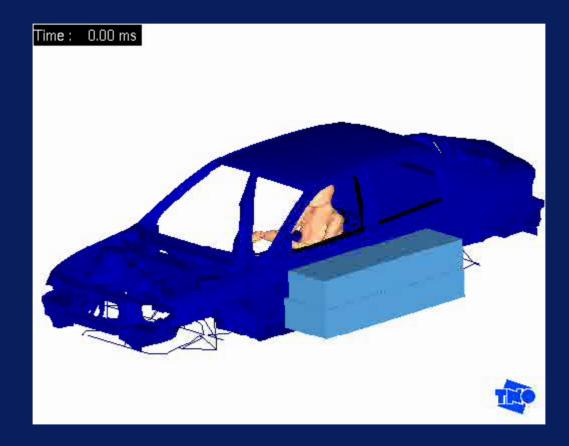
#### **MADYMO Human Models**




ELLIPSOID

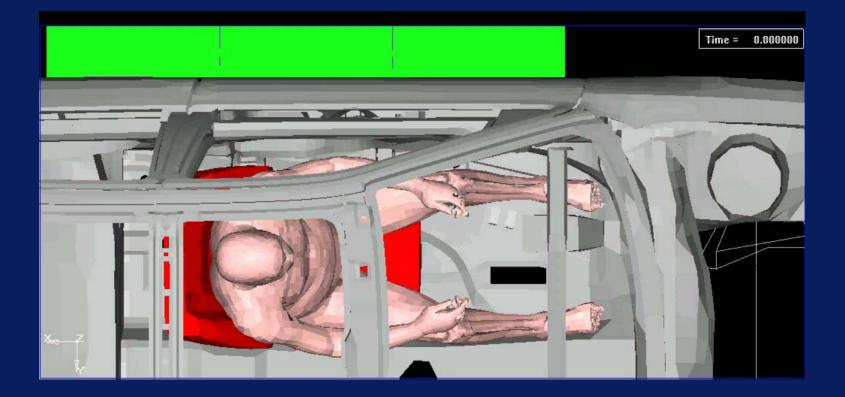
FACET

FEM


Potential Injury Criteria for Sideways Facing Aircraft Seats

# **MADYMO Human Models in Side Impact**




Potential Injury Criteria for Sideways Facing Aircraft Seats

# **MADYMO Human Models in Side Impact**

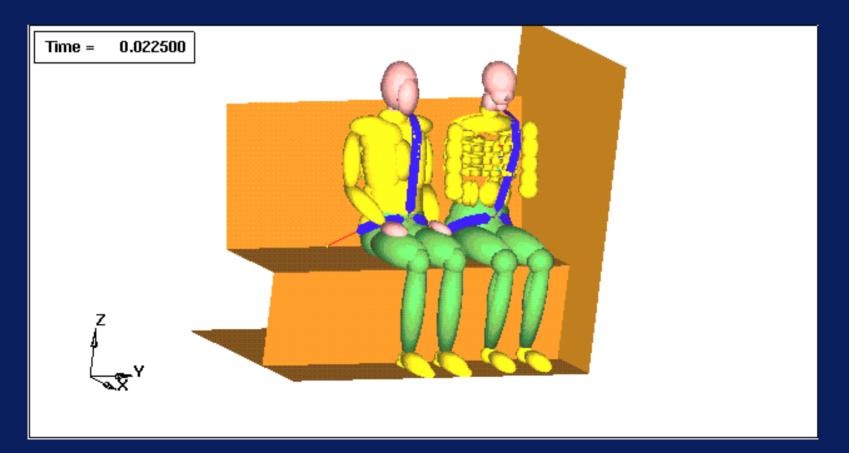


Potential Injury Criteria for Sideways Facing Aircraft Seats

#### **MADYMO Human Models in Side Impact**



#### **Aviation Simulations in MADYMO**


#### • Plane crash



Potential Injury Criteria for Sideways Facing Aircraft Seats

#### **Aviation Simulations in MADYMO**

• Sideways facing seats



# Side Impact Neck Injury Criteria and Tolerances for US FAR

- TNO MADYMO North America & Wayne State University
- Inventory and definition
- PMHS experiments

- Injury criteria and tolerance levels
- Standard side impact test procedure