R Design and Fabrication of a HIC Compliant Bulkhead

Hamid Lankarani

National Institute for Aviation Research Wichita State University Email: lankaran@me.twsu.edu

Fire & Cabin Safety Research Conference Atlantic City, New Jersey October 22-25, 2001

Problem Statement

The compliance with the Head Injury Criteria (HIC) poses a significant problem for aerospace industry

HIC =
$$\left[(t_2 - t_1) \left\{ \frac{1}{(t_2 - t_1)} \int_{t_1}^{t_2} a(t) dt \right\}^{2.5} \right]_{max}$$

Where, a(t) is the head resultant acceleration of the Part 572 Hybrid II ATD in g's and t_1 and t_2 are the response times to maximize the function. Non injurious if : HIC < 1000

*** HIC problems encountered in:**

BulkheadClassCabin FurnishingsCockpCabin Side WallsRow-tInstrument PanelEntryWind Screen Posts/Side Posts

Fire & Cabin Safety Research Conference

Development Of HIC Compliant Bulkhead

Goal

* Proof of concept: It is possible to arrive at a potential solution for bulkhead seating problem that is acceptable to the industry such that HIC < 1000</p>

HIC =
$$\left[(t_2 - t_1) \left\{ \frac{1}{(t_2 - t_1)} \int_{t_1}^{t_2} a(t) dt \right\}^{2.5} \right]_{max}$$

Benefit

 Project contributes to aircraft safety by providing potential solution(s) for occupants head injury protection

Products

- * A prototype HIC compliant bulkhead
- Methodology and guidelines for industry

Static Testing

WICHIT UNIV

Dynamic full-scale sled testing

Correlation between tests and analytical models

Energy - Absorbing Panels

Fire & Cabin Safety Research Conference

Baseline Tests – Typical Production Bulkhead

Dynamic sled test

panels

HIC >1000

Analysis of head impact

Initial stiffness 470 lb./in

Initial stiffness 212 lb./in

30-in. vertical slits at 4 in. apart on the face sheet and carpet

Hybrid II ATD

Rigid iron seat

Seat belt

Validated Analytical Model

points

panel

Fixture

- Biodynamic models were developed and validated against dynamic sled tests
- *Static tests were conducted to obtain load-deflection properties of the bulkhead

Dynamic Sled Test

Sample Analytical and Dynamic Test Results Comparison

Fire & Cabin Safety Research Conference

ATD Response for Different Seat Setbacks

Dynamic Sled Tests on Aluminum Panels

Seat setback 33 in.

Seat setback 35 in.

Seat setback 38 in.

Seat setback (In.)	Head Vel (fi	Impact ocity t/s)	Head Impact Angle (deg)		Head C.G Peak Accel. (g's)		HIC	
	Test	Analysis	Test	Analysis	Test	Analysis	Test	Analysis
33	46	45	32	32	168	166	835	918
35	46	47	34	40	141	140	581	620
38	48	48	67	60	81	80	552	560

Fire & Cabin Safety Research Conference

Design Guidelines for HIC Attenuation

 Validated biodynamic model was used for the development of the design guidelines

*Parametric studies were conducted to study the variation of HIC by varying crush strength and stiffness values

Fixture Design

* Fabrication of test rig

- The existing test rig was modified to replicate proper attachment points
- Modifications were made to the rig to ensure that no additional support was provided to the bulkhead

Modification of attachment points on the test rig

Bulkhead Materials

Bulkhead panel composition

- Honeycomb core
- 2-ply Epoxy fiberglass face sheets
- Covered with carpet used typically in aircraft installations
- Selected based on design guidelines and from sled tests conducted at NIAR and CAMI
- Both metallic and non-metallic cores were studied for the design of the bulkhead

Metallic cores

Non-Metallic cores

Composition and Properties of Bulkhead Panels

Bulkhead Panel Composition

	First Series	Second Series	Third Series
Bulkhead Series	TEKLAM N510	TEKLAM N510E	TEKLAM
Core	Nomex Honeycomb	Nomex Honeycomb	Aluminum Honeycomb
Facings	2-ply Phenolic Fiberglass	2-ply Epoxy Fiberglass	Fiberglass
Carpet	No	Yes	Yes

honeycomb core

Fiberglass face sheets on either

Carpet typically used in aircraft installations

Lay-up of the bulkhead panel-**TEKLAM III Series**

Properties of the acquired panels

		First Series	Second Series	Third Series
Property	Unit	TEKLAM N510	TEKLAM N510E	TEKLAM
Thickness	in	1.000	1.000	1.000
Weight	lb/sq ft	0.74	0.74	0.74
Facings	in	0.04	0.04	0.04
Core	in	1/8	1/8	3/8
Flat wise Compression	psi	310	275	240
Density	psi	3.0	2.0	2.0

Dynamic sled tests were conducted at NIAR on the first series of bulkheads, the stiffest ones, to evaluate the performance of these bulkheads for accelerations in the head of 49 CFR Part 572, Subpart B of the ATD

Sled test # 01008-2

Test Results

Seat Setback	HIC	∆t (ms)	Avg. Accl. (g)
33	1550	69	55.1
35	1450	71	52.8

: First series of bulkheads failed

October 22 – 25, 2001

- Dynamic sled test was conducted on the second series of bulkheads to determine head accelerations
- Bulkheads less stiff than the first series bulkheads

Sled test # 01008-4

Test Results

Seat Setback	HIC	∆t (ms)	Avg. Accl. (g)
33	1321	21.4	82.4
35	781	4.9	118.8

... Second series of bulkheads failed

Fire & Cabin Safety Research Conference

- Sled tests conducted at both smaller and larger seat setback distances
- HIC values obtained below the threshold value of 1000 for both seat setback

Sled test # 01008-12

Resultant head acceleration

Test Results

Seat Setback	HIC	∆t (ms)	Avg. Accl. (g)
33	935	22	62.8
35	165	23.3	35.3

:. The *proof of concept* is demonstrated

Design Methodology

October 22 – 25, 2001

Hybrid Analytical Method to Estimate Stiffness

SIMPLY SUPPORTED RECTANGULAR PLATE :

Stiffness value at any point (x,y) : *

- P:Load
- W: Deflection
- D = EI : Bending Rigidity
- E : Young's Modulus
- I : Second Moment of Area

m, n = 1,3,5... (convergence for three or four terms)

* e.g., the stiffness at the center of a square plate :

$$k = \frac{D}{0.0112 a^2}$$

- * The estimated stiffness is compared to the values in the design curve(s)
- * Other boundary conditions yield similar formulations for the stiffness values

Fire & Cabin Safety Research Conference

combined laminate :

 $\mathbf{D}_{11} = \int \mathbf{Q}_{11} \mathbf{z}^2 \mathbf{d} \mathbf{A}$

* The value of D is replaced by D_{11} in the previous plate stiffness calculation The estimated stiffness is compared to design curve(s)

Fire & Cabin Safety Research Conference

Hybrid Analytical Method to Estimate Stiffness (cont'd)

*For each ply (lamina), stiffness Q in the fiber and transverse directions:

 $Q_{xx} = mE_x$ $Q_{yy} = mE_y$ $Q_{XY} = m \upsilon_Y E_X$ $\mathbf{Q}_{\mathbf{v}\mathbf{v}} = \mathbf{m} \mathbf{v}_{\mathbf{v}} \mathbf{E}_{\mathbf{v}}$ where, $\mathbf{m} = [\mathbf{1} - \mathbf{v}_{\mathbf{v}} \mathbf{v}_{\mathbf{v}}]^{-1}$

*Transforming to direction 1 – 2

For 0° ply : $Q_{11} = Q_{xx}$ For 45° ply : $Q_{11} = \frac{1}{4}Q_{XX} + \frac{1}{4}Q_{YY} + \frac{1}{2}Q_{XY} + Q_{YX}$ For 90° ply : $Q_{11} = Q_{YY}$

Laminate

* Finite Element Analysis can be performed on a bulkhead design to estimate the stiffness at the vicinity of the head impact

The estimated stiffness is compared to the design curve(s)

Static Test to Evaluate Stiffness

800

700

600 Load Curve (**son** (**lbs**) 100 (**bb**) 300 Unload Curve 200 100 Deflection (inches)

Load Vs Deflection

Static testing on bulkheads to obtain load-deflection characteristics

Sample load-deflection characteristics and bulkhead stiffness

* For more complex compositions of the bulkhead materials and geometries, the bulkhead needs to be fabricated first

Static test is conducted on a fabricated bulkhead to evaluate the stiffness at the point of impact

The stiffness value is compared to the design curve(s) Fire & Cabin Safety Research Conference

- HIC compliant bulkheads were designed, fabricated and tested for aircraft interior installation.
- A design methodology was developed for the development of HIC compliant bulkheads.
- The methodology requires estimation of the stiffness of the designed bulkhead. The estimated stiffness will be compared to the ones from the design curve(s) for HIC attenuation.
- Stiffness of the Teklam panels will be estimated/evaluated and plotted vs. the design curve(s)
- Project highlight's the FAA's main objective of enhancing passenger safety.

Fire & Cabin Safety Research Conference