

Analysis of Crash Test of a Composite General Aviation Airplane

Presented at the International Aircraft Fire and Cabin Safety Research Conference

> Steve Hooper J.B. Dwerlkotte Assoc. - Wichita, KS

Marilyn Henderson Wichita State University - Wichita, KS

Karen Lyle NASA Langley Research Center – Hampton, VA

> Atlantic City, NJ Oct. 25, 2001

AGATE The AGATE Consortium

70 Members \$200 Billion Sales 10 Universities 9 Avionics Co. 7 Airframe Co. 6 Trade Associations 3 Engine Co. 1 Retrofit Co. > \$100 Million Budget

36 States
38 Princ. Members
25 Supp. Members
4 Assoc. Members
3 Gov't Partners
7 Technical
Work Packages
2 Management
Work Packages

General Aviation Safety

- GA aircraft accidents cause two fatalities every day
 - Produces public perception that GA aircraft are not safe
- Public expects integrated occupant safety features to be incorporated in vehicle design
 - Safety Education is a Significant Component of Automotive Marketing

Advanced Crashworthiness Research Objectives

- Develop and validate advanced crashworthiness concepts and design methods
 - Improve safety
 - With minimal cost and weight increases
 - Well-defined certification process
- Enhanced Level of Safety
 - Increased survivability
 - Energy absorbing structural design concepts
 - Advanced restraint and occupant protection systems
- AGATE Team Members
 - NASA AvSP
 - Lancair
 - Simula
 - Wichita State University
 - Mod Works
 - FAA NRS / FAA CAMI

AGATE Research Milestones

- Define Survivable Crash Conditions
- Develop Systems Approach to Crashworthiness Design
- AGATE Aircraft Drop Test
 - Utilize Baseline AGATE Aircraft
 - Lancair Columbia 300
 - Incorporate Additional Crashworthiness Features
 - Perform Drop Test at NASA Langley Research Center
 - Analyze Results
- Develop Certification Methodology

AGATE Test Condition

General Aviation Crashworthiness

AGATE Aircraft

- 2 6 seats
- Composite Airframe
- Crashworthiness Study Considered
 - Low Wing
 - Tractor Propulsion System

Fundamentals of Crashworthiness Design

- Maintain a survivable volume for the occupants
- Restrain the occupants within that volume
- Limit the occupant decelerations to tolerable levels
- Provide rapid egress
- Minimize post-crash hazards

Consider the Interactions between the System Components

Airframe Design

- The Essential Cabin Crashworthiness Structure
 - Required to maintain survivable volume
 - The forward fuselage between the two longerons and fwd of the "saddle structure"
- Energy Absorbing Structure was Considered to be the
 - Fuselage structure below the lower longerons
 - This includes the energy-absorbing subfloor

Airframe Design (cont.)

- The following was considered to be frangible Structure
 - The windshield
 - The windshield frame and door frame
 - These structures are not expected to survive severe, but survivable, accidents and therefore were assumed to provide no resistance to the impact forces

Crashworthiness Modeling Approach

- Focus on the load path between the contact surface and the occupants
- Consider the overall aircraft response
- Start the design process from the front of the airplane at the contact surface
 - Progressively work back along the load path
 - Increase the sophistication of the model as one designs successive crashworthiness features
 - Estimate impact loads using "simple" LS-Dyna model
 - Use Nastran to "size" the structure
 - Buckling and crippling were critical

Airframe Design

- The firewall forces were estimated using the engine mount / rigid airplane model
 - Rigid airplane, rigid engine
 - These forces were doubled in view of the higher loads expected for soft soil impacts

50 G Longitudinal Loads

Lower Engine Mount Supports

- The floor structure of the unmodified airplane was inadequate to resist the lower engine mount forces
- By comparison, the floor in Jim Terry's last two drop test articles was fiberglass reinforced plywood
 - The Terry test articles were significantly lighter
- The most convenient solution was to install reinforced steel tubes between the firewall and the front spar shear web at a location near the saddle structure
 - Note: saddle structure is approximately located at the a/c cg

Forward Fuselage Analysis

Linear Nastran Model

Buckling Solution - λ = 9.045

 $P_{cr} = \lambda P^*$

Stiffener Design

± 45° Ply

Foam Core

Wet layup resin: L 285 Resin & L 285 Hardener Martin G. Sheufler GmbH (MGS) Material: Newport NB321/13K70P Carbon Cloth

Crippling Analysis

Forward Fuselage Reinforcement

Longeron

Firewall & Fwd Fuselage

LS-Dyna Simulations

t = 0.000

t = 0.015

t = 0.033

t = 0.050

Em9.13.14.avi (top)

em9.13.6.right.2.avi (bottom)

Energy Absorbing Subfloor

- Foam blocks (each strake)
 - Under the front spar 11 in. x 10 in.
 - Under the rear spar 11 in. x 15 in.
 - Behind Baggage Compartment 11 in. x 20 in.

EA Subfloor Fabrication

- EA strakes bonded to belly skin using HYSOL EA 9309.3 two-part adhesive
 - High Peel Strength

Impact Dynamic Test Facility

On-Board Data Acquisition System

4 Hybrid II Atd's

28 Airframe Accelerometers

Drop Test

V = 94.7 ft/sec, θ = 30° (nose down)

Post-Test Photos

Post-test Photos

Cabin Accelerations

Vertical Acceleration

Longitudinal Acceleration

Rear Seat ATD Response

unfiltered CFC=60

27.15

27.05 27.1

Lumbar Load

Upper Torso Restraint Load

Bottom Cushion Effectively Attenuated Multiple (2-3) Impacts

Lumbar Load, Upper Torso Restraint, & HIC OK

27

Time (sec)

0

26.9

26.95

Vertical Pulse and Lumbar Load

Vertical Acceleration

Lumbar Load

Left-Rear Bottom Cushion

Forward

Drop Test Observations

- Secondary Bonds Performed Well
 - No Failures
 - Engineers who have tested a lot of composites know things that designers don't
- Airframe strength was adequate for the hard-surface impact
 - May or may not be adequate for soft-soil impact
- Energy Management thru application of the Impulse / Momentum Equation may be a more effective crashworthiness strategy than Energy Absorption for applications with limited space

$$\int_{t_1}^{t_2} \mathbf{R} \, dt = m \, \mathbf{V}_2 - m \, \mathbf{V}_1$$

Acknowledgments

- This program was supported by
 - NASA AvSP
 - NASA AGATE (including a number of industry members)
- The Contributions of Lancair and Simula are noteworthy
- The Advanced Composites Laboratory at the WSU's National Institute for Aviation Research
- Steve Soltis FAA Crashworthiness NRS
- Rick DeWeese FAA CAMI
- Bill Shipman Photometrics
- Nelson Seabolt NASA IDRF Technician

Conclusions

- The cabins of GA aircraft can be designed to maintain a survivable volume using traditional aerospace design techniques
 - Analysis and design start at initial point of contact and follow load path to aircraft cg
- Linear-elastic techniques are useful in crashworthy design studies
- Nonlinear finite element computer programs are effective analyses techniques, but
 - They have not matured in terms of their ability to predict the effect of local details
 - Their failure models are inadequate for composite and sandwich structures
 - Their use in modern design cycles is expensive and time consuming

Conclusions (cont.)

- Seat / Restraint systems designed to the requirements of 14 CFR 23.562 performed well in the full-scale AGATE drop test
 - Successfully mitigated two-three successive impulses
- Accident mitigation strategies should consider technologies designed to exploit impulse-momentum mechanisms in addition to energy absorbing mechanisms
 - e.g. ramped firewalls, load-limiting engine mounts, etc.