AIR ACCIDENT RECONSTRUCTION AND CRASHWORTHINESS ANALYSIS

A. WALTON, CIC S. WHAYEB, CIC R. HASHEMI, CIC R. CARTER, AAIB

AIMS

Simulation can support investigators and designers by providing:

Motion of aircraft and break-up during impact

Acceleration, velocity, displacement and force timehistories during impact

Structure crush, break-up forces and sequences, contact tracks on ground

Structural failure in flight

AIR ACCIDENT INVESTIGATION TOOL (AAIT)

AAIT - BACKGROUND

- Kegworth (737-400, 1989) reconstructed using the KRASH software
- Concept of AAIT
 - Library of ready-prepared aircraft models
 - Simple component names and graphical input

CH-47 Chinook

MODEL LIBRARY

- Assembly of a model takes several man months
- Military aircraft fleets are generally 'small' so all aircraft can be modeled
- Civil fleet size is 'unlimited' so some models have to be selected to represent a class average
- If an exact model is not available, the nearest model can be used to start a reconstruction quickly
- All models are subject to continuous improvement

AAIT LIBRARY MODELS (01/10/01)

- Westland Lynx Mk 8
- Westland SeaKing
- Westland EH101 Merlin
- Boeing CH-47 Chinook

- MD-81
- SAAB 340
- Shorts 330
- Piper Cherokee
- Cessna 150/172
- Cessna 440
- Beechcraft 1900
- ATR 42

AAIT INTERFACE

- Each mass, beam and spring is referred-to via its own component name
- The user can review and change the properties of components in the model
- Simple adjustment of 'flight variable' mass (i.e. occupants, fuel and cargo)
- Menu-driven with graphical pre- and post-processors

Initial Conditions

Initial Conditions						
AIRCRAFT ORIENTATION AND VELOCITY						
F	ROLL (0-360) degrees		PITCH (0-360) degrees		-YAW (0-360) degrees	
	C Left	 Right 	€ Up	C Down	C Left	Right
VELOCITIES				ANGULAR VELOCITIES		
	FORE/AFT: .0 (ft/sec) (+ve: fore -ve: aft)			ROLL VEL: .0 (deg/sec) (+ve: right -ve: left)		
	LATERAL: .0 (ft/sec)			PITCH VEL: .0 (deg/sec)		
	(+ve: right -ve: left) VERTICAL: 0 (ft/sec) (+ve: down -ve: up)			(+ve: up -ve: down)		
				YAW VEL: .0 (deg/sec)		
				(+ve: right -ve: left)		
OK Cancel						

AAIT - VERIFICATION

Accidents do not allow controlled verification of simulation results, so...

- Application of AAIT is led by Investigator
- Initial speed, orientation of aircraft is given by Investigator
- Simulation output is compared with wreckage trail and aircraft damage
- Iterations are made until best possible match between predicted and actual is made.
- Results may be a 'range of data' rather than single value

Air Accident Investigation Tool Case Study

Accident to Cessna 404, G-ILGW, at Glasgow on 3 September 1999

Aerial view

- 11 occupants 2 flight crew, 9 passengers
- 3 survivors seats 9, 10, 11
- Fire developed rapidly
- Pathology reports smoke inhalation and heat
- Injury scoring passenger injuries not life-threatening
- Seats separated from tracks

AAIB - Crashworthiness issues

Damage to airframe and seats

- Assessment of pathology reports
- AAIT modelling of impact with CICL
- Assessment against dynamic seat criteria
- AAIB Safety Recommendation?

METHOD OF SIMULATION

- Build AAIT model using available data
- Simulate impact using AAIT
- Repeat simulation until best results are obtained
- Extract crash signal on floor at selected seat
- Build seat and occupant model
- Simulate seat and occupant under the effect of crash signal

Floor crush was important in this case (related to seat attachment failure) so use was made of a Finite Element model to calculate this property for input into AAIT

 (Alternately, floor crush could have been obtained by physical crush testing of floor)

OASYS D3PLOT: CESSNA404 TITAN, CESSNA404-1.KEY

.000000000

Crash signal from floor at selected seat positions are used as forcing function in seat/occupant analysis

Typical filtered acceleration trace

 Experimental additional moving-point average filter used to clarify signal

OASYS D3PLOT: CESSNA-SEATS-BASE-RASOASYS - KRASH SIM I

SUMMARY

- Simulation has been used to support crash investigation since at least '89
- It provides estimated data on factors relating to survivability that are difficult to get by other means
- The output can also be used by aircraft crashworthiness engineers to improve things
- The simulation methods used are mainstream